COMP 551 – Applied Machine Learning Lecture 15: Neural Networks (cont'd)

Instructor: Joelle Pineau (*jpineau@cs.mcgill.ca*)

Class web page: *www.cs.mcgill.ca/~jpineau/comp551*

Unless otherwise noted, all material posted for this course are copyright of the instructor, and cannot be reused or reposted without the instructor's written permission.

Learning the identity function

- Also called auto-regression.
- This a case of unsupervised learning.

Input		Output
10000000	\rightarrow	1000000
01000000	\rightarrow	01000000
00100000	\rightarrow	00100000
00010000	\rightarrow	00010000
00001000	\rightarrow	00001000
00000100	\rightarrow	00000100
00000010	\rightarrow	00000010
0000001	\rightarrow	0000001

Learning the identity function

• Neural network structure:

Learned hidden
 layer weights:
 (capture an alternate
 encoding of the data.)
 Input

Input	Hidden Layer					Output
10000000	\rightarrow	.89	.04	.08	\rightarrow	1000000
01000000	\rightarrow	.15	.99	.99	\rightarrow	01000000
00100000	\rightarrow	.01	.97	.27	\rightarrow	00100000
00010000	\rightarrow	.99	.97	.71	\rightarrow	00010000
00001000	\rightarrow	.03	.05	.02	\rightarrow	00001000
00000100	\rightarrow	.01	.11	.88	\rightarrow	00000100
00000010	\rightarrow	.80	.01	.98	\rightarrow	00000010
00000001	\rightarrow	.60	.94	.01	\rightarrow	0000001

Stochastic gradient descent for LMS loss

- Initialize all weights to small random numbers.
- Repeat until convergence:
 - Pick a training example.
 - Feed example through network to compute output $o = o_{N+H+1}$.
 - For the output unit, compute the correction:

$$\delta_{N+H+1} \leftarrow o(1-o)(y-o)$$

- For each hidden unit *h*, compute its share of the correction:

$$\delta_h \leftarrow o_h (1 - o_h) w_{N+H+1,h} \delta_{N+H+1}$$

- Update each network weight:

$$w_{h,i} \leftarrow w_{h,i} + \alpha_{h,i} \delta_h x_{h,i}$$

Gradient descent

Backpro-

pagation

Initialization

A family of sigmoid functions

COMP-551: Applied Machine Learning

Joelle Pineau

Rectified linear units

- Instead of using binary units, try log(1+exp(Wx)).
- Unit outputs linear function when input is positive, zero otherwise.
- Useful for speech processing and object recognition.

Encoding the input

Joelle Pineau

Encoding the input: Discrete inputs

• Discrete inputs with *k* possible values are often encoded using a

1-hot or *1-of-k* encoding:

- k input bits are associated with the variable (one for each possible value).
- For any instance, all bits are 0 except the one corresponding to the value found in the data, which is set to 1.
- If the value is missing, all inputs are set to 0.

Encoding the input: Real-valued inputs

- Important to scale the inputs, so they have a common, reasonable range
- Standard transformation: normalize the data
 - To get mean=0, variance=1, subtract the mean and divide by the standard deviation
 - Works well if the data is roughly normal, but bad if we have outliers.

Encoding the input: Real-valued inputs

- Important to scale the inputs, so they have a common, reasonable range
- Standard transformation: normalize the data
 - To get mean=0, variance=1, subtract the mean and divide by the standard deviation
 - Works well if the data is roughly normal, but bad if we have outliers.
- Alternatives:
 - 1-to-n encoding: discretize the variable into a given number of intervals n.
 - Thermometer encoding: like 1-to-n but if the variable falls in the *i*=th interval, all bits 1..*i* are set to 1.
 - The *thermometer encoding* is usually better than *1-to-n* encoding.

• Multi-class domains:

Joelle Pineau

- Multi-class domains:
 - Use a network with several output units: one per class
 - Compared to training multiple 1-vs-all classifiers, this allows shared weights at the hidden layers.

- Multi-class domains:
 - Use a network with several output units: one per class
 - Compared to training multiple 1-vs-all classifiers, this allows shared weights at the hidden layers.

• Regression tasks:

Joelle Pineau

- Multi-class domains:
 - Use a network with several output units: one per class
 - Compared to training multiple 1-vs-all classifiers, this allows shared weights at the hidden layers.

• Regression tasks:

- Use a network with several output sigmoid units, corresponding to encoding of different output ranges of output value.
- Use an output unit without a sigmoid function (i.e. just the weighted linear combination) to get full range of output values.

Network architecture

- Overfitting occurs if there are too many parameters compared to the amount of data available.
- Choosing the number of hidden units
 - Too few hidden units do not allow the concept to be learned.
 - Too many lead to slow learning and overfitting.
 - If the *m* inputs are binary, log *m* is a good heuristic choice.

Network architecture

- Overfitting occurs if there are too many parameters compared to the amount of data available.
- Choosing the number of hidden units
 - Too few hidden units do not allow the concept to be learned.
 - Too many lead to slow learning and overfitting.
 - If the *m* inputs are binary, log *m* is a good heuristic choice.
- Choosing the number of layers
 - Always start with **one** hidden layer.
 - Add one at a time, see if solution improves on validation set.

Convergence of backpropagation

- Backpropagation = gradient descent over <u>all parameters</u> in network.
- If the learning rate is appropriate, the algorithm is guaranteed to converge to a <u>local minimum</u> of the cost function.

Convergence of backpropagation

- Backpropagation = gradient descent over <u>all parameters</u> in network.
- If the learning rate is appropriate, the algorithm is guaranteed to converge to a <u>local minimum</u> of the cost function.
 - NOT the global minimum. (Can be much worse.)
 - There can be MANY local minimum.
 - Use random restarts = train multiple nets with different initial weights.
 - In practice, the solution found is often good (try a few parallel restarts).

Convergence of backpropagation

- Backpropagation = gradient descent over <u>all parameters</u> in network.
- If the learning rate is appropriate, the algorithm is guaranteed to converge to a <u>local minimum</u> of the cost function.
 - NOT the global minimum. (Can be much worse.)
 - There can be MANY local minimum.
 - Use random restarts = train multiple nets with different initial weights.
 - In practice, the solution found is often good (try a few parallel restarts).
- Training can take thousands of iterations <u>VERY SLOW</u>! But using network after training is very fast.
- Can we find solution faster (i.e. in fewer iterations)?

Overtraining

- Traditional overfitting is concerned with the number of parameters vs. the number of instances
- In neural networks: related phenomenon called overtraining occurs when weights take on large magnitudes, i.e. unit saturation
 - As learning progresses, the network has more active parameters.

Joelle Pineau

Overtraining

- Traditional overfitting is concerned with the number of parameters vs. the number of instances
- In neural networks: related phenomenon called overtraining occurs when weights take on large magnitudes, i.e. unit saturation
 - As learning progresses, the network has more active parameters.

Joelle Pineau

Regularization in neural networks

- Incorporate an L2 penalty: $J(w) = 0.5(y-h_w(x))^2 + 0.5\lambda w^T w$
 - Select λ with cross-validation.
- Can also use different penalties λ_1 , λ_2 for each layer.
 - Can be interpreted as a Bayesian prior over weights.

Choosing the learning rate

- Backprop is **very sensitive** to the choice of learning rate.
 - Too large \Rightarrow divergence.
 - Too small \Rightarrow VERY slow learning.
 - The learning rate also influences the ability to escape local optima.
- Very often, different learning rates are used for units in different layers. Hard to tune by hand!
- **Heuristic**: Track performance on validation set, when it stabilizes, divide learning rate by 2.

Optimization method: Adagrad

- Calculate adaptive learning rate per parameter.
- Intuition: Adapt learning rate depending on previous updates to that parameter.
 - Learn slowly for frequent features.
 - Learn faster for rare but informative features.
- Can add regularization term.

See: Duchi, Hazan, Singer (2011) Adaptive subgradient methods for online learning and stochastic optimization. JMLR.

Adding momentum

• On the t-th training sample, instead of the update:

$$\begin{array}{l} \Delta w_{ij} \leftarrow \alpha_{ij} \delta_j x_{ij} \\ \text{Ne do: } \Delta w_{ij}(t) \leftarrow \alpha_{ij} \delta_j x_{ij} + \beta \Delta w_{ij}(t-1) \end{array}$$

The second term is called momentum

Adding momentum

• On the t-th training sample, instead of the update:

$$\begin{array}{l} \Delta w_{ij} \leftarrow \alpha_{ij} \delta_j x_{ij} \\ \text{We do: } \Delta w_{ij}(t) \leftarrow \alpha_{ij} \delta_j x_{ij} + \beta \Delta w_{ij}(t-1) \end{array}$$

The second term is called momentum

Advantages:

- Easy to pass small local minima.
- Keeps the weights moving in areas where the error is flat.
- Increases the speed where the gradient stays unchanged.

Disadvantages:

- With too much momentum, it can get out of a global maximum!
- One more parameter to tune, and more chances of divergence.

More application-specific tricks

- If there is too little data, it can be perturbed by random noise;
 this helps escape local minima and gives more robust results.
 - In image classification and pattern recognition tasks, extra data can be generated, e.g., by applying transformations that make sense.

More application-specific tricks

- If there is too little data, it can be perturbed by random noise;
 this helps escape local minima and gives more robust results.
 - In image classification and pattern recognition tasks, extra data can be generated, e.g., by applying transformations that make sense.
- Weight sharing can be used to indicate parameters that should have the same value based on prior knowledge.
 - Each update is computed separately using backpropagation, then the tied parameters are updated with an average.

When to consider using NNs

- Input is high-dimensional discrete or real-valued (e.g. raw sensor input).
- Output is discrete or real valued, or a vector of values.
- Possibly noisy data.
- Training time is not important.
- Form of target function is unknown.
- Human readability of result is not important.
- The computation of the output based on the input has to be fast.

Several applications

- Speech recognition and synthesis.
- Natural language understanding.
- Image classification, digit recognition.
- Financial prediction.
- Game playing strategies.
- Robotics.
- •

In recent years, many state-of-the-art results obtained using **Deep Learning**.

Final notes

- What you should know:
 - Definition / components of neural networks.
 - Training by backpropagation.
 - Overfitting (and how to avoid it).
 - When to use NNs.
 - Some strategies for successful application of NNs.
- Project 2 peer review opening today. Due in 1 week.
- Additional information about neural networks:

Video & slides from the Montreal Deep Learning Summer School: http://videolectures.net/deeplearning2017_larochelle_neural_networks/ https://drive.google.com/file/d/0ByUKRdiCDK7-c2s2RjBiSms2UzA/view?usp=drive_web https://drive.google.com/file/d/0ByUKRdiCDK7-UXB1R1ZpX082MEk/view?usp=drive_web