COMP 551 — Applied Machine Learning
Lecture 15: Neural Networks (cont'd)

Instructor: Joelle Pineau (jpineau@cs.mcqill.ca)

Class web page: www.cs.mcgqill.ca/~jpineau/compb51

Unless otherwise noted, all material posted for this course are copyright of the
instructor, and cannot be reused or reposted without the instructor’s written permission.




Learning the identity function

* Also called auto-regression.

* This a case of unsupervised learning.

Input Output
10000000 — 10000000
01000000 — 01000000
00100000 — 00100000
00010000 — 00010000
00001000 — 00001000
00000100 — 00000100
00000010 — 00000010
00000001 — 00000001
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Learning the identity function

Inputs Outputs

 Neural network structure:

* Learned hidden Input Hidden Layer Output
layer weights: 100000000 — .89 .04 .08 — 10000000
(capture an alternate 01000000 — .15 99 99 — 01000000
00100000 — .01 .97 27 — 00100000
encoding of the data.) 00010000 — .99 97 .71 — 00010000
00001000 — .03 .05 .02 — 00001000
00000100 — .01 .11 .88 — 00000100
00000010 — .80 .01 .98 — 00000010
00000001 — .60 .94 .01 — 00000001
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Stochastic gradient descent for LMS loss

 [Initialize all weights to small random numbers. } Initialization

* Repeat until convergence:

— Pick a training example.
Forward
— Feed example through network to compute output 0 = Opyyy41/” pass

— For the output unit, compute the correction: ™
5l\r+H+1 — O(]‘ — 0)(-1/ — O) Backpro_
— For each hidden unit h, compute its share of the correction: pagation
(Sh, — Oh.(l — Oh)'lL"J\’—+—H+1,I154’\r'+H—+—1 Y,
— Update each network weight:
Gradient
Wh,i < Wh,i T Qp g Opx h.i descent
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A family of sigmoid functions

O
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Rectified linear units

* Instead of using binary units, try log(1+exp(Wx)).
« Unit outputs linear function when input is positive, zero otherwise.

« Useful for speech processing and object recognition.

—RelU |
h '~ Logistic
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Encoding the input
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Encoding the input: Discrete inputs

 Discrete inputs with k possible values are often encoded using a
1-hot or 1-of-k encoding:

— kinput bits are associated with the variable (one for each possible
value).

— For any instance, all bits are 0 except the one corresponding to the
value found in the data, which is set to 1.

— If the value is missing, all inputs are set to 0.
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Encoding the input: Real-valued inputs

* Important to scale the inputs, so they have a common,
reasonable range
« Standard transformation: normalize the data

— To get mean=0, variance=1, subtract the mean and divide by the
standard deviation

— Works well if the data is roughly normal, but bad if we have outliers.
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Encoding the input: Real-valued inputs

* Important to scale the inputs, so they have a common,
reasonable range

- Standard transformation: normalize the data
— To get mean=0, variance=1, subtract the mean and divide by the

standard deviation
— Works well if the data is roughly normal, but bad if we have outliers.

» Alternatives:
1-to-n encoding: discretize the variable into a given number of intervals n.

Thermometer encoding: like 1-to-n but if the variable falls in the i=th interval,

all bits 7..j are set to 1.
— The thermometer encoding is usually better than 7-fo-n encoding.
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Encoding the output

e Multi-class domains:
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Encoding the output

e Multi-class domains:

— Use a network with several output units: one per class

— Compared to training multiple 1-vs-all classifiers, this allows shared

Hidden Layer

weights at the hidden layers.

Input n
-
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Encoding the output

e Multi-class domains:

— Use a network with several output units: one per class

— Compared to training multiple 1-vs-all classifiers, this allows shared

Hidden Layer

weights at the hidden layers.

Input n
R

* Regression tasks:
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Encoding the output

e Multi-class domains:

— Use a network with several output units: one per class

— Compared to training multiple 1-vs-all classifiers, this allows shared

Hidden Layer

weights at the hidden layers.

Input n
R

* Regression tasks:

— Use a network with several output sigmoid units, corresponding to
encoding of different output ranges of output value.

— Use an output unit without a sigmoid function (i.e. just the weighted
linear combination) to get full range of output values.
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Network architecture

« Overfitting occurs if there are too many parameters compared to

the amount of data available.

* Choosing the number of hidden units

— Too few hidden units do not allow the concept to be learned.
— Too many lead to slow learning and overfitting.

— If the m inputs are binary, log m is a good heuristic choice.
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Network architecture

« Overfitting occurs if there are too many parameters compared to

the amount of data available.

* Choosing the number of hidden units

— Too few hidden units do not allow the concept to be learned.
— Too many lead to slow learning and overfitting.

— If the m inputs are binary, log m is a good heuristic choice.

« Choosing the number of layers

— Always start with one hidden layer.

— Add one at a time, see if solution improves on validation set.
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Convergence of backpropagation

« Backpropagation = gradient descent over all parameters in network.

« If the learning rate is appropriate, the algorithm is guaranteed to converge
to a local minimum of the cost function.
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Convergence of backpropagation

« Backpropagation = gradient descent over all parameters in network.

« If the learning rate is appropriate, the algorithm is guaranteed to converge
to a local minimum of the cost function.

— NOT the global minimum. (Can be much worse.)
— There can be MANY local minimum.
— Use random restarts = train multiple nets with different initial weights.

— In practice, the solution found is often good (try a few parallel restarts).
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Convergence of backpropagation

« Backpropagation = gradient descent over all parameters in network.

« If the learning rate is appropriate, the algorithm is guaranteed to converge
to a local minimum of the cost function.

— NOT the global minimum. (Can be much worse.)
— There can be MANY local minimum.
— Use random restarts = train multiple nets with different initial weights.

— In practice, the solution found is often good (try a few parallel restarts).

« Training can take thousands of iterations - VERY SLOW! But using
network after training is very fast.

« Can we find solution faster (i.e. in fewer iterations)?
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Overtraining

 Traditional overfitting is concerned with the number of parameters

vs. the number of instances

* In neural networks: related phenomenon called overtraining occurs

when weights take on large magnitudes, i.e. unit saturation

— As learning progresses, the network has more active parameters.

Error versus weight updates (example 1)
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Overtraining

 Traditional overfitting is concerned with the number of parameters

vs. the number of instances

* In neural networks: related phenomenon called overtraining occurs

when weights take on large magnitudes, i.e. unit saturation

— As learning progresses, the network has more active parameters.

Error versus weight updates (example 1)
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Regularization in neural networks

 Incorporate an L2 penalty: J(w) = 0.5(y-h,(x))? + 0.56Aw™w

— Select A with cross-validation.

« Can also use different penalties A, , A, for each layer.

— Can be interpreted as a Bayesian prior over weights.
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Choosing the learning rate

« Backprop is very sensitive to the choice of learning rate.
— Too large = divergence.

— Too small = VERY slow learning.

— The learning rate also influences the ability to escape local optima.

« Very often, different learning rates are used for units in different

layers. Hard to tune by hand!

* Heuristic: Track performance on validation set, when it

stabilizes, divide learning rate by 2.
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Optimization method: Adagrad

« Calculate adaptive learning rate per parameter.

 Intuition: Adapt learning rate depending on previous updates to

that parameter.

— Learn slowly for frequent features.

— Learn faster for rare but informative features.

« Can add regularization term.

See: Duchi, Hazan, Singer (2011) Adaptive subgradient methods for online learning
and stochastic optimization. JMLR.
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Adding momentum

* On the t-th training sample, instead of the update:
Awij <— cvijéja:ij‘
We do: Awij(t) < az’j5jxij -+ BAwij(t — 1)

The second term is called momentum
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Adding momentum

* On the t-th training sample, instead of the update:
Awij <— 047;3-(5]-:1:7;3:
We do: Awij(t) < aijdjxij -+ BAwij(t — 1)

The second term is called momentum

ﬂdvantages: \

— Easy to pass small local minima.

— Keeps the weights moving in areas where the error is flat.

— Increases the speed where the gradient stays unchanged.

Disadvantages:

—  With too much momentum, it can get out of a global maximum!

\ — One more parameter to tune, and more chances of divergence./

COMP-551: Applied Machine Learning 26 Joelle Pineau



More application-specific tricks

« |f there is too little data, it can be perturbed by random noise;

this helps escape local minima and gives more robust results.

— In image classification and pattern recognition tasks, extra data can
be generated, e.qg., by applying transformations that make sense.
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More application-specific tricks

« |f there is too little data, it can be perturbed by random noise;

this helps escape local minima and gives more robust results.

— In image classification and pattern recognition tasks, extra data can
be generated, e.qg., by applying transformations that make sense.

*  Weight sharing can be used to indicate parameters that should

have the same value based on prior knowledge.

— Each update is computed separately using backpropagation, then
the tied parameters are updated with an average.
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When to consider using NNs

* Input is high-dimensional discrete or real-valued (e.g. raw

sensor input).
« Qutput is discrete or real valued, or a vector of values.
« Possibly noisy data.
» Training time is not important.
« Form of target function is unknown.
« Human readability of result is not important.

- The computation of the output based on the input has to be fast.
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Several applications

« Speech recognition and synthesis.

» Natural language understanding.

* Image classification, digit recognition.
* Financial prediction.

« (Game playing strategies.

* Robotics.

In recent years, many state-of-the-art results obtained using Deep Learning.
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Final notes

*  What you should know:

— Definition / components of neural networks.

— Training by backpropagation.

— Opverfitting (and how to avoid it).

— When to use NNs.

— Some strategies for successful application of NNs.

* Project 2 peer review opening today. Due in 1 week.

« Additional information about neural networks:

Video & slides from the Montreal Deep Learning Summer School:

http.//videolectures.net/deeplearning2017 _larochelle _neural networks/
https.//drive.google.com/file/d/0ByUKRdICDK7-c2s2RjBiSms2UzA/Niew?usp=drive_web
https.//drive.google.com/file/d/0ByUKRdAICDK7-UXB1R1ZpX082MEk/view?usp=drive_web
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