Time and uncertainty

- The world changes! We need to track and predict it.
 - Robot localization, diabetes management, vehicle diagnosis, etc.

- **Basic idea:** copy state and evidence variables for each time step.

 \[X_t = \text{set of unobservable state variables at time } t \]

 E.g. *BloodSugar*, *StomachContents*, etc.

 \[E_t = \text{set of observable evidence variables at time } t \]

 E.g. *MeasuredBloodSugar*, *PulseRate*, *FoodEaten*, etc.

- Assume **discrete time** (step size depends on problem.)
Temporal variables

- Consider a variable that changes over time, X_t.
 - Notation for time series sequence: $X_{t-p:k} = X_p, X_{t+1}, ..., X_{t+k}$

- Changes in the state variable over time are determined by the transition model, $P(X_t | X_{0:t-1})$ (= "the probability of being in state $X=x$ at time t, conditioned on the previous states visited at times 0 to $t-1"$).

- In some cases, the state variable is (partially) observed through a sensor model, $P(E_t | X_0:t, E_{0:t-1})$

- These are defined over the full domains of X and E.

Markov processes (Markov chains)

- **Markov assumption**: X_t depends on bounded subset of $X_{0:t-1}$.
 - First-order Markov process: $P(X_t | X_{0:t-1}) = P(X_t | X_{t-1})$
 - Second-order Markov process: $P(X_t | X_{0:t-1}) = P(X_t | X_{t-1}, X_{t-2})$
Markov processes (Markov chains)

- **Markov assumption**: X_t depends on bounded subset of $X_{0:t-1}$.
 - First-order Markov process: $P(X_t \mid X_{0:t-1}) = P(X_t \mid X_{t-1})$
 - Second-order Markov process: $P(X_t \mid X_{0:t-1}) = P(X_t \mid X_{t-2}, X_{t-1})$

- **Stationary process assumption**: transition and sensor model are fixed for all time steps, t: $P(X_t \mid X_{0:t-1}) = P(X_t \mid X_{1:t})$
 \[P(E_t \mid X_{0:t}, E_{0:t-1}) = P(E_t \mid X_t) \]

Example

\[\begin{align*}
R_{t-1} & \quad P(R_{t-1}) \\
\text{Rain}_{t-1} & \quad t & 0.3 & \quad f & 0.7
\end{align*} \]

\[\begin{align*}
R_t & \quad P(R_t) \\
\text{Rain}_t & \quad R_t & 0.2 & \quad P(U_{t-1}) & 0.8
\end{align*} \]

\[\begin{align*}
\text{Rain}_{t+1} & \quad X_t \\
\text{Rain}_t & \quad E_t \\
\text{Umbrella}_{t-1} & \quad \text{Umbrella}_t & \quad \text{Umbrella}_{t+1}
\end{align*} \]
Example

\[
\begin{array}{c}
\text{Rain}_{t-1} \quad \text{Rain}_t \quad \text{Rain}_{t+1} \\
\downarrow \quad \quad \quad \downarrow \quad \quad \quad \downarrow \\
\text{Umbrella}_{t-1} \quad \text{Umbrella}_t \quad \text{Umbrella}_{t+1}
\end{array}
\]

\[
\begin{array}{c}
P(R_t|\text{Rain}_{t-1}) \\
0.7 \\
0.3
\end{array}
\]

\[
\begin{array}{c}
P(R_{t+1}|\text{Rain}_t) \\
0.9 \\
0.2
\end{array}
\]

\[X_t, E_t\]

Caveat: (Ignore this problem for today’s lecture.)
- First-order Markov assumption not exactly true in real world!
- Possible fixes:
 - Increase order of Markov process.
 - Augment state, e.g. add \(\text{Temp}_t, \text{Pressure}_t\)

Applications

- Text processing
- Speech recognition
- Biological sequences
- Robot navigation
- Financial time series

Many, many more!
- Other related applications (e.g. in computer vision) assume a spatial version, where variable is replicated in X-Y space, rather than over time steps.
Inference tasks in temporal models

1. **Filtering**: $P(X_t|e_{1:t})$

 E.g. In text analysis, infer topic probability, based on observed words.

2. **Prediction**: $P(X_{t+k}|e_{1:t})$ for $k>0$

 E.g. In financial modeling, predict prices based on previous trends.
Inference tasks in temporal models

1. **Filtering:** \(P(X_t|e_{1:t}) \)

 E.g. In text analysis, infer topic probability, based on observed words.

2. **Prediction:** \(P(X_{t+k}|e_{1:t}) \) for \(k>0 \)

 E.g. In financial modeling, predict prices based on previous trends.

3. **Smoothing:** \(P(X_k|e_{1:t}) \) for \(0\leq k<t \)

 E.g. In genome analysis, produce plausible sequence alignments.

4. **Most likely explanation:** \(\arg\max_{X_{1:t}} P(X_{1:t} | e_{1:t}) \)

 E.g. In speech recognition, infer most likely words, based on observed phonemes.

It is commonly assumed that \(X \) is the latent state and \(E \) is the evidence. In that case we treat \(X \) as **missing data**.
1. Filtering

- Goal: Devise a recursive state estimation algorithm.

\[P(X_{t+1} | e_{t+1}) = f(e_{t+1}, P(X_t | e_{t+1})) \quad \text{[Define } f(\text{)]} \]

\[P(X_{t+1} | e_{t+1}) = P(X_{t+1} | e_{t+1}, e_{t+1}) \]
1. Filtering

• Goal: Devise a recursive state estimation algorithm.

\[P(X_{t+1} | e_{t+1}) = f(e_{t+1}, P(X_t | e_{1:t})) \]
[Define \(f() \)]

\[P(X_{t+1} | e_{t+1}) = P(X_{t+1} | e_t, e_{t+1}) \]

\[= a P(e_{t+1} | X_{t+1}, e_t) P(X_{t+1} | e_t) \]
[Baye's rule]

\[= a P(e_{t+1} | X_{t+1}) P(X_{t+1} | e_t) \]
[Cond. Indep.]

\[= a P(e_{t+1} | X_{t+1}) \sum_{x_t} P(X_{t+1} | x_t, e_{t+1}) P(x_t | e_t) \]
[Sum out \(X_t \)]

\[= a P(e_{t+1} | X_{t+1}) \sum_{x_t} P(X_{t+1} | x_t) P(x_t | e_t) \]
[Cond. Indep.]
1. Filtering

• Goal: Devise a recursive state estimation algorithm.

\[P(X_{t+1} | e_{1:t+1}) = f(e_{t+1}, P(X_t | e_{1:t})) \quad \text{[Define } f()] \]

\[P(X_{t+1} | e_{1:t+1}) = P(X_{t+1} | e_{1:t}, e_{t+1}) \]

\[= a P(e_{t+1} | X_{t+1}, e_{1:t}) P(X_{t+1} | e_{1:t}) \quad \text{[Baye's rule]} \]

\[= a P(e_{t+1} | X_{t+1}) P(X_{t+1} | e_{1:t}) \quad \text{[Cond. Indep.]} \]

\[= a P(e_{t+1} | X_{t+1}) \sum_{x_t} P(X_{t+1} | x_t, e_{1:t}) P(x_t | e_{1:t}) \quad \text{[Sum out } X_t\text{]} \]

\[= a P(e_{t+1} | X_{t+1}) \sum_{x_t} P(X_{t+1} | x_t) P(x_t | e_{1:t}) \quad \text{[Cond. Indep.]} \]

Filtering = normalization, estimation, prediction, recurrence.

• Notation: \(f_{1:t+1} = \text{FORWARD}(f_{1:t}, e_{t+1}) \), where \(f_{1:t} = P(X_t | e_{1:t}) \)

• Time and space constant (independent of \(t \)).
Aim:

I.e.,

\[
P(X_{t+1}) = \sum_{X_t} P(X_{t+1} | X_t) P(X_t)
\]

and

\[
P(X_t | X_{t+1})
\]
Filtering example

Transition model:

<table>
<thead>
<tr>
<th>R_{t-1}</th>
<th>$P(R_t)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>t</td>
<td>0.7</td>
</tr>
<tr>
<td>f</td>
<td>0.3</td>
</tr>
</tbody>
</table>

Sensor model:

<table>
<thead>
<tr>
<th>R_t</th>
<th>$P(U_t)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>t</td>
<td>0.9</td>
</tr>
<tr>
<td>f</td>
<td>0.2</td>
</tr>
</tbody>
</table>

True: 0.500
False: 0.500

$P(R_1 | U_1=1) = ?$

More generally: $P(R_t | U_t=1) = ?$ for $t>1$

Smoothing example

Transition model:

<table>
<thead>
<tr>
<th>R_{t-1}</th>
<th>$P(R_t)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>t</td>
<td>0.7</td>
</tr>
<tr>
<td>f</td>
<td>0.3</td>
</tr>
</tbody>
</table>

Sensor model:

<table>
<thead>
<tr>
<th>R_t</th>
<th>$P(U_t)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>t</td>
<td>0.9</td>
</tr>
<tr>
<td>f</td>
<td>0.2</td>
</tr>
</tbody>
</table>

True: 0.500
False: 0.500

$P(R_2 | U_1=1) = ?$

More generally: $P(R_t | U_t=1) = ?$ for $t>1$
2. Prediction

• Notice simple prediction to \(k \) steps in the future (without evidence):
\[
P(X_{t+k} | X_t) = P(X_{t+k} | X_{t+k-1}) P(X_{t+k-1} | X_{t+k-2}) \ldots P(X_{t+1} | X_t)
\]

• To estimate \(P(X_{t+k} | e_{1:t}) \) for \(k > 0 \) (=predict \(t+k \) steps in the future, using evidence \(e_{1:t} \)):
 - Use filtering for time steps \(t \) to \(t \), then apply simple prediction as above for remaining \(k \) steps.
 - Need to sum over all possible assignments of intermediates \(X_{t+1} \) to \(X_{t+k-1} \).
3. Smoothing

Compare: Prediction: $P(X_{t+1} | e_t)$ for $k > 0$

Smoothing: $P(X_t | e_t)$ for $0 < k < t$

Why is this useful?

3. Smoothing

Why? Estimate of $P r(X_t | ...)$ is informed by evidence before and after.

- Divide evidence $e_{1:t}$ into $e_{t:k}$, $e_{k+1:t}$:

 $P(X_t | e_{t:k}) = P(X_t | e_{i:t}, e_{i+1:t})$

 $= a P(X_t | e_{i:t}) P(e_{i+1:t} | X_t, e_{i:t})$

 $= a P(X_t | e_{i:t}) P(e_{i+1:t} | X_t)$

 $= a f_i b_{i+1}$

 Forward message, $f_{i:t}$, computed as in filtering.

 - Backward message b_{k+1} computed by backwards recursion.

 $b_{k+1} = P(e_{k+1:t} | X_t) = a \sum_{i=k+1}^{t} P(e_{k+1:t} | X_t, x_{i+1}) P(x_{i+1} | X_t)$

 $= a \sum_{i=k+1}^{t} P(e_{k+1:t} | X_t, x_{i+1}) P(x_{i+1} | x_{i+1}) P(x_{i+1} | X_t)$
Smoothing example

COMP-424: Artificial intelligence 27 Joelle Pineau
Aim: I.e.,

\[P_{t+1} = \alpha \]

\[t \]

\[\ldots \]

\[= \]

\[(\ldots) \]

\[\ldots \]

\[= \]

\[(\ldots) \]

\[\ldots \]

\[= \]

\[(\ldots) \]

\[\ldots \]

\[= \]

\[(\ldots) \]

\[\ldots \]

\[= \]

\[(\ldots) \]

\[\ldots \]

\[= \]

\[(\ldots) \]

\[\ldots \]

\[= \]

\[(\ldots) \]

\[\ldots \]

\[= \]

\[(\ldots) \]

\[\ldots \]

\[= \]

\[(\ldots) \]

\[\ldots \]

\[= \]

\[(\ldots) \]

\[\ldots \]

\[= \]

\[(\ldots) \]

\[\ldots \]

\[= \]

\[(\ldots) \]

\[\ldots \]

\[= \]

\[(\ldots) \]

\[\ldots \]

\[= \]

\[(\ldots) \]

\[\ldots \]

\[= \]

\[(\ldots) \]

\[\ldots \]

\[= \]

\[(\ldots) \]

\[\ldots \]

\[= \]

\[(\ldots) \]

\[\ldots \]

\[= \]

\[(\ldots) \]

\[\ldots \]

\[= \]

\[(\ldots) \]

\[\ldots \]

\[= \]

\[(\ldots) \]

\[\ldots \]

\[= \]

\[(\ldots) \]

\[\ldots \]

\[= \]

\[(\ldots) \]

\[\ldots \]

\[= \]

\[(\ldots) \]

\[\ldots \]

\[= \]

\[(\ldots) \]

\[\ldots \]

\[= \]

\[(\ldots) \]

\[\ldots \]

\[= \]

\[(\ldots) \]

\[\ldots \]

\[= \]

\[(\ldots) \]

\[\ldots \]

\[= \]

\[(\ldots) \]

\[\ldots \]

\[= \]

\[(\ldots) \]

\[\ldots \]

\[= \]

\[(\ldots) \]

\[\ldots \]

\[= \]

\[(\ldots) \]

\[\ldots \]

\[= \]

\[(\ldots) \]

\[\ldots \]

\[= \]

\[(\ldots) \]

\[\ldots \]

\[= \]

\[(\ldots) \]

\[\ldots \]

\[= \]

\[(\ldots) \]

\[\ldots \]

\[= \]

\[(\ldots) \]

\[\ldots \]

\[= \]

\[(\ldots) \]

\[\ldots \]

\[= \]

\[(\ldots) \]

\[\ldots \]

\[= \]

\[(\ldots) \]

\[\ldots \]

\[= \]

\[(\ldots) \]

\[\ldots \]

\[= \]

\[(\ldots) \]

\[\ldots \]

\[= \]

\[(\ldots) \]

\[\ldots \]

\[= \]

\[(\ldots) \]

\[\ldots \]

\[= \]

\[(\ldots) \]

\[\ldots \]

\[= \]

\[(\ldots) \]

\[\ldots \]

\[= \]

\[(\ldots) \]

\[\ldots \]

\[= \]

\[(\ldots) \]

\[\ldots \]

\[= \]

\[(\ldots) \]

\[\ldots \]

\[= \]

\[(\ldots) \]

\[\ldots \]

\[= \]

\[(\ldots) \]

\[\ldots \]

\[= \]

\[(\ldots) \]

\[\ldots \]

\[= \]

\[(\ldots) \]

\[\ldots \]

\[= \]

\[(\ldots) \]

\[\ldots \]

\[= \]

\[(\ldots) \]

\[\ldots \]

\[= \]

\[(\ldots) \]

\[\ldots \]

\[= \]

\[(\ldots) \]

\[\ldots \]

\[= \]

\[(\ldots) \]

\[\ldots \]

\[= \]

\[(\ldots) \]

\[\ldots \]

\[= \]

\[(\ldots) \]

\[\ldots \]

\[= \]

\[(\ldots) \]

\[\ldots \]

\[= \]

\[(\ldots) \]

\[\ldots \]