On the topic of quizzes

- Quizzes will happen occasionally, roughly once a week (~8-10 during the semester). Dates currently on myCourses are wrong.

- Quizzes will be released by 9am on the day they are due.
- They will close by 2pm on the same day.

- Questions that cause difficulty will be discussed in class.
- The main purpose of the quizzes is for self-assessment, and to give me information on what concepts are mastered vs not.
Quick recap

- Problems are described by states, operators, costs.
- For each state and operator, there is a set of successor states.
- In search, we maintain a set of nodes, forming a search tree.
- The fringe of the tree contains candidate nodes, and is typically maintained using a priority queue.
- Different search algorithms use different priority functions.

Overview of today’s class

- Using heuristics to inform (guide) the search
- Informed search algorithms
 - Best-First (Greedy) Search
 - Heuristic Search
 - A* Search
Informed Search

- Uninformed search methods expand nodes based on distance from the start node $d(n_{start}, n)$ \(\text{Easy: we always know that!}\)

- What about expanding based on distance to the goal \(d(n, n_{goal})\)?

 - If we know \(d(n, n_{goal})\) exactly? \(\text{Easy: just expand the nodes needed to find a solution!}\)

 - If we do not know \(d(n, n_{goal})\) exactly, can we use intuition about this distance?
 - We will call this intuition a heuristic \(h(n)\).

Example: Travelling through Romania

What is good heuristic for path planning problems?
Example heuristic: path planning

• What is a reasonable heuristic?
 – The straight-line distance between two places.

• Is it always right?
 – Clearly not - roads are rarely straight!

• But it’s roughly in the right directly.

Example heuristic: eight-puzzle

• Two possible heuristics: $h_1(n) = \text{number of misplaced tiles} = 7$
 $h_2(n) = \text{total Manhattan distance} = (2+3+3+2+4+2+0+2) = 18$

• Which is better? Intuitively, $h_2(n)$ seems better: varies more across state space and its estimate is closer to the true cost.
Where do heuristics come from?

- Prior knowledge about the problem.
- Exact solution to a relaxed version of the problem.
 - E.g. If rules of eight-puzzle are changed to allow a tile to move anywhere. Then $h_1(n)$ gives the exact distance to goal.
 - E.g. If rules of eight-puzzle are changed to allow a tile to move to any adjacent square. Then $h_2(n)$ gives the exact distance to goal.
- Learning from prior experience.

Best-First Search

- **Algorithm**: expand the **most promising node** according to the heuristic.
- **Example**: After node A, we choose node C, because it has a better heuristic value than B.
Best-First Search

- **Algorithm**: expand the most promising node according to the heuristic.

- Example:

```
  START  2  A  1  B  1  C  2  GOAL
  h = 4 h = 3 h = 2 h = 1 h = 0
```

- Best-first search is similar to Breadth-first search (BFS)

 How similar depends on the goodness of the heuristic.
 If the heuristic is always 0, best-first search is the same as BFS.

Best-First Search

- **Algorithm**: expand the most promising node according to the heuristic.

- Example:

```
  START  2  A  1  B  1  C  2  GOAL
  h = 4 h = 3 h = 2 h = 1 h = 0
```

- Best-first search is roughly the “opposite” of uniform cost search.

 Uniform cost search considers the cost-so-far.
 Best-first search considers the cost-to-go.
Best-First Search

- **Algorithm:** expand the most promising node according to the heuristic.

- **Example:**

 ![Diagram of a tree with nodes and heuristic values](image)

- Best-first search is a **greedy method**.
 - Maximize short-term advantage without worrying about long-term consequences.

Properties of Greedy Search

- In worst case: exponential time/space complexity (same as BFS).
 - $O(b^d)$ (b=branching factor, d=solution depth).

- A good heuristic can help a lot!
 - $O(bd)$ (same as DFS).

- Completeness:
 - Not always complete. Can get stuck in loops.
 - Complete in finite spaces, if we check to avoid repeated states.

- Not optimal! (as seen in the example.) => Can we fix this?
Fixing greedy search

• What’s the problem with best-first search?
 – It is **too greedy**: does not take into account the cost so far!

• Can you suggest a solution?
 – Let g be the **cost of the path so far**
 – Let h be a **heuristic function** (estimated cost to go)

• **Heuristic search**: best-first search, greedy with respect to $f = g + h$
 – Think of $f = g + h$ as the **estimate** of the cost of the current path.

Heuristic search

• **Algorithm**:
 – At every step, take node n from the front of the queue.
 – Add to queue successors n' with **priorities**: $f(n') = g(n') + h(n')$
 – Terminate when a goal state is popped from the queue.

• Previous example:
Example

Priority queue: \{(S,f(S))\}
\{(S,f(S)), (B,4), (A,7)\}
\{(S,f(S)), (B,4), (C,5), (A,7)\}
\{(S,f(S)), (B,4), (C,5), (A,7), (G,9)\}
\{(S,f(S)), (B,4), (C,5), (A,7), (G,8), (G,9)\} \textbf{Found!}

\textbf{Remark:} Continue expanding nodes after goal is found if there are unexpanded nodes that have lower cost than current path to goal.
Is heuristic search optimal?

• Example:

\[h(A) = ? \]

- Short answer: NO!
- In this example, any heuristic \(h(A) \geq 3 \) leads to suboptimal path.

We must put conditions on the choice of heuristic to guarantee optimality.

Admissible heuristics

• Let \(h^*(n) \) be the shortest path from \(n \) to any goal state.

- A heuristic \(h \) is called an admissible heuristic if:

\[h(n) \leq h^*(n), \, \forall \, n. \]

- Admissible heuristics are optimistic.

• Trivial case of an admissible heuristic: \(h(n) = 0, \, \forall n. \)
 - In this case, we get uniform-cost search.

• If \(h() \) is optimistic, we must have \(h(g) = 0, \, \forall g \in G \), the goal set.
Examples of admissible heuristics

- **Robot navigation?** straight-line distance to goal.

- **8-puzzle?**
 - h_1: number of misplaced tiles.
 - h_2: sum of Manhattan distances for each tile to its goal position.

- In general, if we get a heuristic by solving a relaxed version of the problem, we will obtain an admissible heuristic.

A* search

- **Algorithm:** Heuristic search with an admissible heuristic.
- Let g be the cost of the path so far.
- Let h be an admissible heuristic function.
- Perform greedy search with respect to:
 $$ f = g + h $$
Consistency

- An admissible heuristic \(h \) is called consistent (or monotone*) if for every state \(s \) and successor \(s' \), we have \(h(s) \leq c(s,s') + h(s') \).
 - Think of \(h \) as getting "more precise" as it gets closer to the goal.

- This is a version of triangle inequality*, so heuristics that respect this inequality are metrics*.

Note: Look-up these terms if they are not familiar.

- Consistency is a slightly stronger property than admissibility.

Is A* complete?

- Suppose that \(h \) is consistent, and all costs \(c(s,s')>0 \).
- This implies that \(f \) cannot decrease along any path: \(f(s) = g(s) + h(s) \leq g(s) + c(s,s') + h(s') = f(s') \)

- In this case, a node cannot be re-expanded.
- If a solution exists, it must have bounded cost.

- Hence A* will have to find it! **So it is complete.**
Fixing inconsistent heuristics

- Make a small change to A*:
 Instead of \(f(s') = g(s') + h(s') \), use \(f(s') = \max\{g(s') + h(s'), f(s)\} \)

- With this change, \(f \) is non-decreasing along any path, and the previous argument applies.

Is A* optimal?

- Proof by contradiction. Suppose a suboptimal goal \(G_2 \) is in queue.
- Let \(n \) be an unexpanded node on a shortest path to optimal goal \(G_1 \).
- We have:
 \[
 f(G_2) = g(G_2) \text{ since } h(G_2) = 0 \\
 > g(G_1) \text{ since } G_2 \text{ is suboptimal} \\
 \geq f(n) \text{ since } h \text{ is admissible}
 \]

- Since \(f(G_2) > f(n) \), A* will select \(n \) for expansion before \(G_2 \).
- Similarly, all nodes on the optimal path will be chosen before \(G_2 \), so \(G_1 \) will be reached before \(G_2 \).
Dominance

- If $h_2(n) > h_1(n)$, for all n (both admissible), then h_2 dominates h_1

 Intuition: $h_2(n)$ is more informative than $h_1(n)$

- Eight-puzzle example:
 - $d=14$
 Iterative depth search = 3,473,941 nodes
 $A^*(h_1) = 539$ nodes
 $A^*(h_2) = 113$ nodes
 - $d=24$
 Iterative depth search = too many nodes
 $A^*(h_1) = 39,135$ nodes
 $A^*(h_2) = 1,641$ nodes

Properties of A^*

- Complete!
- Optimal!

- Exponential worst-case time/space complexity.
 - But with a perfect heuristic, complexity is $O(bd)$, because we only expand nodes on optimal path.
 - With a good heuristic, complexity is often sub-exponential.

- Optimally efficient: with a given h, no other search algorithm will be able to expand fewer nodes.
Iterative Deepening A* (IDA*)

- Same trick as we used before to avoid memory problems.
- Algorithm is basically depth-first search, but using the f-value to decide in which order to consider the descendents of a node.
- Use an f-value limit, rather than a depth limit.

- IDA* has the same properties as A* but uses less memory.
- In order to avoid expanding new nodes always, old ones can be remembered if memory permits (this version is known as SMA*).

Iterative Deepening A* example

- Set $f_1 = 4 \Rightarrow$ only S, B are searched (no other nodes are put in the queue, because they exceed the cutoff threshold.)
- Set $f_2 = 8 \Rightarrow$ now S, A, B, C, G, are all searched.
Real-time search

In dynamic environments, agents have to act before they finish thinking!

- Instead of searching for a complete path to the goal, we would like the agent to do a bit of search, then move in the direction of the currently ‘‘best’’ path.

- Main issue: how do we avoid cycles, if we do not have enough memory to mark states?

Real-Time A* (Korf, 1990’s)

- When should the algorithm backtrack to a previously visited state \(s \)?

- Intuition: if the cost of backtracking to \(s \) and solving the problem from there is better than the cost of solving from the current state

 - Korf’s solution: do A* but with the \(g \) function equal to the cost from the current state, rather than from the start.
 - This simulates physically going back to the previous state.

- This is an execution-time algorithm!
How to decide the best direction?

- Do we need to examine the whole frontier of a search tree to decide what node is best? Not if we have a monotone f function!

- First idea: bounding the search
 - Look at all the nodes on the frontier, but then move one step in the direction of the node with lowest f value.

- Second idea: pruning
 - Maintain a variable α that has the lowest f value of any node on the current search horizon.
 - A node with cost higher than α will never get expanded.
 - If a node with lower f value is discovered, α is updated.

- This is called α-pruning, and allow search to proceed deeper.

- Same idea is used in adversarial search for game playing.

Search improvements

- Consider Rubik’s cube: 43,252,003,274,489,856,000 states!
- How do people solve this puzzle?
Changing the search problem

- People do not think at the level of individual moves!
- Instead, there are sequences of moves, designed to achieve a certain pattern (e.g. L-shape, T-shape, etc.)
- Instead of choosing individual operators, choose what subgoal to achieve next. Then solve this subgoal, pick the next one, etc.
- The solution to a subgoal is often standard, and can be reused.

Abstraction and decomposition

- **Decomposition**: The key to solving complex problems is to break them into smaller parts. Each part may be easy to solve; then put the solutions together.
- A macro-action is a sequence of actions from the original problem.
 - E.g. Making a T in Rubik’s cube.
- **Abstraction** refers to methods that ignore information, in order to speed-up computations.
 - In Rubik’s cube, focus only on certain aspects and ignore rest of tiles.
- In abstraction we construct a compact representation, with many “real” states mapped into a single “abstract” state.
- Decomposition and abstraction are usually applied together.
Examples

- Landmark navigation:
 - Find a path from the current location to a well-known landmark (e.g. McGill metro).
 - Find a path between landmarks (this can be pre-computed).
 - Find a path from last landmark to destination.

Trade-offs

- By decomposing a problem and putting the solutions together, we may be giving up optimality.
- Apply this to problems that we can’t solve otherwise!
- Solutions to subgoals are often cached in a database, and can be re-used (e.g. with different state/goal states).
- When we choose subgoals, we need to be careful that the overall problem still has a solution.
 - Under some conditions, sub-solutions can be pieced together to preserve completeness (Knoblock, 1990’s).
Summary of informed search

- Insight: use knowledge about the problem, in the form of a heuristic.
 - The heuristic is a guess for the remaining cost to the goal.
 - A good heuristic can reduce search time from exponential to almost linear.
- Best-first search is greedy with respect to the heuristic, not complete and not optimal.
- Heuristic search is greedy with respect to $f=g+h$, where g is the cost so far and h is the estimated cost to go.
- A^* is heuristic search where h is an admissible heuristic.
- A^* is complete and optimal.

A^* is a key AI search algorithm!