Sock Matching

- We’ve got a basketful of mixed up pairs of socks.

- We want to pair them up reaching into the basket as few times as we can.
Sock Sorter A

• Strategy: Repeat until basket is empty
 – Grab a sock.
 – Grab another.
 – If they don’t match, toss them back in the basket.

• Will this procedure ever work?

• Will it always work?

Measuring Performance

• Let’s say we have 8 pairs of socks.
 • How many times does this strategy reach into the basket?
 – Min?
 – Max?
 – Average?
 • How do these values change with increasing numbers of pairs of socks?
Sock Sorter B

- Strategy: Repeat until basket is empty
 - Grab a sock.
 - Is its match already on the bed?
 - If yes, make a pair.
 - If no, put it on the bed.

Measuring Performance

- Once again, assume we have 8 pairs of socks.
- How many times does this strategy reach into the basket?
 - Min?
 - Max?
 - Average?
- How do these values grow with increasing numbers of pairs of socks?
- How does this compare with Sock Sorter A?
Comparing Algorithms

Repeat For Each Sock

sockA

• Do you have a matching pair? Set it aside.
• Do you have a non-matching pair? Put them back in the basket.

sockB

• Is there a match on the table? Pair them and set the pair aside.
• Otherwise, find an empty place on the table and set the sock down.

Notable if No Table

• Sock Sorter B seems like it is faster.
• One disadvantage of Sock Sorter B is that you must have a big empty space.
• What if you can only hold 2 socks at a time?
Sock Sorter C

- Strategy: Repeat until basket empty
 - Grab a sock.
 - Grab another.
 - Repeat until they match:
 - Toss second sock into the basket.
 - Grab a replacement.

Measuring Performance

- Once again, let's imagine we have 8 pairs of socks.
- How many times does this strategy reach into the basket?
 - Min?
 - Max?
 - Average?
- How do these values grow with increasing numbers of pairs of socks?
Comparing Algorithms

Round #2

- Do you have a matching pair? Set it aside.
- Do you have a non-matching pair? Put them both back in the basket.

Analysis of Sock Sorter C

- Roughly the same number of matching operations as Sock Sorter A, but since it always holds one sock, roughly half the number of socks taken out of the basket.
Algorithms

• Sock Sorter A, Sock Sorter B and Sock Sorter C are three different algorithms for solving the problem of sock sorting.

• Different algorithms can be better or worse in different ways.
 – Number of operations
 E.g. total # of times reaching into basket, total # of comparisons.
 – Amount of memory
 E.g. # of socks on the bed (or in the hand) at any given time.

Lessons Learned

• Given notion of time (# instructions to execute) and space (amount of memory), we can compare different algorithms.

• It’s important to use a good algorithm!

• It’s especially important to think how time and space change, as a function of the size of the problem (i.e. # pairs of socks).
On the usefulness of sorting

- Recall last class’s example about finding the minimum in an array.

- How many times is MinValue assigned?
 - Case 1: List is in **increasing** order.
 - Only once!
 - Case 2: List is in **decreasing** order.
 - MinValue gets assigned K times.
 - Case 3: List is in **random** order.
 - A bit harder to estimate...

If we are going to use the list **many** times, better to sort it first!

Sorting Lists

- Many problems of this type! This is an important topic in CS.
 - Sorting words in alphabetical order.
 - Ranking objects according to some numerical value (price, size, …)
Sorting arrays

- Consider an array containing a list of names:
 - Lindsey
 - Christopher
 - Nicholas
 - Erica
 - Rahul
 - Jane

- How can we arrange them in alphabetical order?
A simple way to sort: Bubble sort

- Compare the first two values. If the second is larger, then swap.
- Continue with the 2nd and 3rd values, and so on.
- When you get to the end, start again.
- Repeat until no values are swapped.

Original list:
Lindsey
Christopher
Nicholas
Erica
Rahul
Jane

Partially sorted list:
Christopher
Lindsey
Nicholas
Erica
Rahul
Jane

Let’s think about Bubble sort

- Is this a good way to sort items?
 - Simple to implement. This is good!
 - Guaranteed to find a fully sorted list. This is good too!

- How do we decide whether it’s a good method?
Useful things to consider

• How long will it take?
• How much memory will it take?
• Is there a way we can measure this?

• Best criteria:
 – number of basic machine operations: move, read, write data
 – amount of machine memory

• Can we think of something similar, at a higher level?

Predicting the “cost” of a sorting program

• Number of pairwise comparisons
 For Bubble sort:
 • Let’s say \(n \) is the number of items in the array.
 • Need \(n-1 \) comparisons on every pass through the array.
 • Need \(n \) passes in total (at most).
 • So \(n^2(n-1) \) pairwise comparisons.

• Amount of memory we need (in addition to the original array)
 For Bubble sort:
 • Everything happens within the original array.
 • Need to keep track of the index of the current item being compared.
 • Need to keep track, during each pass, of whether a swap was done.
 • So only 1 integer and 1 bit of memory.
A more intuitive sort method: Selection sort

- Scan the full array to find the first element, and put it into 1st position.
- Repeat for the 2nd position, the 3rd, and so on until array is sorted.

Original list:
Lindsey
Christopher
Nicholas
Erica
Rahul
Jane

Partially sorted list:
Christopher
Lindsey
Nicholas
Erica
Rahul
Jane

What is the “cost” of Selection sort?

- Number of pairwise comparisons
 - Let’s say \(n \) is the number of items in the array.
 - Need \(n-1 \) comparisons on the 1st pass through the array.
 - Need \(n-2 \) comparisons on the 2nd pass through the array.
 - And so on until we reach the last two elements.
 - So in total: \((n-1) + (n-2) + (n-3) + \ldots + 1 = n \times \frac{(n-1)}{2} \) pairwise comparisons.
 - This is better than Bubble sort. (But only by a factor of 2.)

- Amount of memory we need (in addition to the original array)
 - Everything happens within the original array.
 - Need to keep track of the index of the current item being compared.
 - Need to keep track, during each pass, of the index of the best value found so far.
 - So only 2 integers in memory. Roughly the same as Bubble sort.
Why do we care about the “cost”?

- Need to know whether we can use our program or not!

- Can we use Selection sort to alphabetically sort the words in the English Oxford dictionary?
 - So we would need 189 trillion pairwise comparisons!

- What if we try to sort websites according to hostnames:
 - About 127.4 million active domain names (as of January 2011).
 - So we would need 8.06×10^{15} pairwise comparisons!

- Fortunately, not much “extra” memory is needed :-))

Let’s find a better way: Merge sort

- Divide-and-Conquer! (This is our old friend “Recursion”.)

- Main idea:
 1. Divide the problem into subproblems.
 2. Conquer the sub-problems by solving them recursively.
 3. Merge the solution of each subproblem into the solution of the original problem.

- What does this have to do with sorting?
Merge sort

• Example:
 – Sort an array of names to be in alphabetical order.

• Algorithm:
 1. Divide the array into left and right halves.
 2. Conquer each half by sorting them (recursively).
 3. Merge the sorted left and right halves into a fully sorted array.

Merge sort: An example

Original list:
Lindsey
Christopher
Nicholas
Erica
Rahul
Jane

Divide in 2
Lindsey
Christopher
Nicholas

Divide again
Erica
Rahul
Jane

Divide again
Christopher
Lindsey
Nicholas

Start merging
Erica
Rahul
Jane

Merge again…
Nicholas

Erica
Rahul
Jane
Another example of Merge sort

- Consider sorting an array of numbers:

```
38 27 43 3 9 82 10
38 27 43 3
38 27 43
38 27
3 9 10
```

Let’s think about Merge sort

- Possibly harder to implement than Bubble sort or Selection sort.

- Number of pairwise comparisons:
 - How many times we divide into left/right sets? At most $\log_2(n)$
 - How many items to sort once everything is fully split? None!
 - How many comparisons during merge, if subsets are sorted?
 - Need about n comparisons if sorted subsets have $n/2$ items each.
 - So in total: n comparisons per level * $\log_2(n)$ levels = $n \cdot \log_2(n)$
 - This is better than Bubble sort and Selection sort (by a lot).

- Amount of memory we need (in addition to the original array):
 - Every time we merge 2 lists, we need extra memory.
 - For the last merge, we need a full n-item array of extra memory.
 - This is worse than Bubble sort and Selection sort, but not a big deal.
 - We also need 2 integers (1 for each list) to keep track of where we are during merging.
Merge sort is a bargain!

- Using Merge sort to alphabetically sort the words in the English Oxford dictionary.
 - So we would need 11.8 million pairwise comparisons.
 - Versus 1.89 trillion if using Selection sort!

- Using Merge sort to organize websites according to hostnames:
 - Recall: about 127.4 million active domain names (as of January 2011).
 - So we would need 3.4 billion pairwise comparisons.
 - Versus 8.06×10^{15} if using Selection sort!

Number of comparisons

- Between Dec. 2007 and Jan. 2011 number of domains names grew from 62 millions to 127 millions.
 - Number of comparisons with Bubblesort grows from 3.4×10^{15} to 1.6×10^{16}.
 - Number of comparisons with Mergesort grows from 1.6 to to 3.4 billion comparisons.
Quick recap on the number of operations

- Number of operations \(y \) as a function of the problem size \(n \)
 - Constant: \(y = c \) \textit{Best}
 - Linear: \(y = n \)
 - Log-linear: \(y = n \log_2(n) \)
 - Quadratic: \(y = n^2 \)
 - Exponential: \(y = 2^n \) \textit{Worse}

- Bubble sort and Selection sort take a \textbf{quadratic} number of comparisons.
 - This is as bad as it gets, for sorting algorithms.

- Merge sort takes a \textbf{linear*log} number of comparisons.
 - This is as good as it gets, for sorting algorithms.

- This is a \textbf{worst-case} analysis (i.e. \textbf{maximum} number of operations.)

A word about memory

- Merge sort uses twice as much memory as Selection sort.
 - This is not a big deal. If you can store the array once, you can probably store it twice.

- But computers have 2 types of memory:
 - RAM (rapid-access memory) and hard-disk memory.
 - RAM is much faster, but usually there is less of it.
 - As long as everything fits into RAM, no problem!

- If array is too large for RAM, then you need to worry about:
 - Number of times sections of the array are copied / swapped to and from disk.
Take-home message

• Sorting is one of the **most useful algorithms**.
 – Applications are everywhere.

• There are many ways to solve a problem.
 – For sorting: Bubble sort, Selection sort, Merge sort, and many more.
 – Some methods use \(n \log_2(n) \) comparisons and (almost) no extra memory!

• When choosing an algorithm to solve a problem, it’s important to think about the **cost** (= time and memory) of this algorithm.

• It’s also useful to think about how “easy” the algorithm is to program (more complicated = more possible mistakes), but this is harder to quantify.