
AspectOptima:
A Case Study on Aspect Dependencies and

Interactions

Jörg Kienzle, Ekwa Duala-Ekoko, Samuel Gélineau

School of Computer Science, McGill University,
Montreal, QC, Canada, H3A 2A7

{Joerg.Kienzle@,{Ekwa.Duala-Ekoko,Samuel.Gelineau}@mail.}mcgill.ca

Abstract. This paper presents AspectOptima, a language independent,
aspect-oriented framework consisting of a set of ten base aspects — each
one providing a well-defined reusable functionality — that can be con-
figured to ensure the ACID properties (Atomicity, Consistency, Isola-
tion, and Durability) for transactional objects. The overall goal of As-
pectOptima is to serve as a case study for aspect-oriented software devel-
opment, in particular for evaluating the expressivity of aspect-oriented
programming languages and how they address complex aspect interac-
tions and dependencies. The ten base aspects of AspectOptima are sim-
ple, yet have complex dependencies and interactions among each other.
To implement different concurrency control and recovery strategies, these
aspects can be composed and assembled into different configurations;
some aspects conflict with each other, others have to adapt their run-
time behavior according to the presence or absence of other aspects. The
design of AspectOptima highlights the need for a set of key language fea-
tures required for implementing reusable aspect-oriented frameworks. To
illustrate the usefulness of AspectOptima as a means for evaluating pro-
gramming language features, an implementation of AspectOptima in As-
pectJ is presented. The experiment reveals that AspectJ ’s language fea-
tures do not directly support implementation of reusable aspect-oriented
frameworks with complex dependencies and interactions. The encoun-
tered AspectJ language limitations are discussed, workaround solutions
are shown, potential language improvements are proposed where appro-
priate, and some preliminary measurements are presented that highlight
the performance impact of certain language features.

Keywords: aspect dependencies, aspect collaboration, aspect interfer-
ence, reusability, aspect-oriented language features, aspect binding, inter-
aspect ordering, inter-aspect configurability, per-object aspects, dynamic
aspects.

1 Introduction

Aspect-orientation [1] has been accepted as a powerful technique for modular-
izing crosscutting concerns during software development in so-called aspects.

Research has shown that aspect-oriented programming is successful in modular-
izing even very application-independent, general concerns such as distribution
[2], concurrency [3,4], persistency [2,5], and failures [4].

However, the complexity of aspect-oriented software development increases
exponentially when aspects are used in combination with each other. Dependen-
cies between aspects raise the question of how to express aspect configurations,
aspect interactions, conflicts among aspects, and aspect ordering. One way to
find answers to these questions is to investigate non-trivial and realistic case
studies, in which an application with many different concerns is implemented
using many interacting aspects.

To this intent we designed AspectOptima [6], a language independent, aspect-
oriented framework consisting of a set of ten base aspects — each one providing
a well-defined reusable functionality — that can be assembled in different config-
urations to ensure the ACID properties (Atomicity, Consistency, Isolation, and
Durability) for transactional objects. The primary objective of AspectOptima
is to provide the aspect-oriented research community with a language indepen-
dent framework that can serve as a case study for evaluating the expressivity
of aspect-oriented programming languages, the performance of aspect-oriented
programming environments, and the suitability of aspect-oriented modeling no-
tations, aspect-oriented testing techniques and aspect-oriented software develop-
ment processes. The aspects that make up AspectOptima are simple, yet have
complex dependencies and interactions among each other. The aspects can be
composed and assembled into different configurations to achieve various con-
currency control and recovery strategies. This composition is non-trivial; some
aspects conflict with each other, others cannot function without the support of
other aspects, and others have to adapt their run-time behavior according to the
presence or absence of other aspects.

We believe that studies such as this one are essential to discover key lan-
guage features for dealing with aspect dependencies and interactions. The ex-
perience gained allows researchers to evolve aspect-oriented languages to even
better modularize crosscutting concerns, reason about composition, and, most
importantly, provide powerful and elegant ways of reuse. The second part of
the paper demonstrates this by showing an implementation of AspectOptima
in AspectJ. The goal of this effort was not to implement AspectOptima in an
elegant way using the most appropriate aspect-oriented programming language.
The idea was rather to show how the exercise of implementing AspectOptima
can highlight the elegance or the lack of programming language features that can
appropriately address aspect dependencies and interference in a reusable way.
We have chosen to perform our implementation in AspectJ since it is currently
one of the most popular and stable aspect-oriented programming languages, and
not because of the features it provides.

The paper is structured as follows: section 2 describes the context of the
case study, namely transactional systems, the ACID properties of transactional
objects, concurrency control, and recovery strategies. We present the design of
AspectOptima in section 3; it details the design of the 10 well-defined, reusable

base aspects, and provides a description of three aspects that implement various
concurrency control and recovery strategies by composing the base aspects in
different ways. This design highlights the need for a set of key language features
required for implementing reusable aspect-oriented frameworks. In section 4,
we describe how we used AspectOptima to evaluate the expressiveness of the
language features offered by the aspect-oriented programming language AspectJ.
We present parts of our implementation to demonstrate that AspectJ provides
sufficient (but certainly not ideal or elegant) support for dealing with mutually
dependent and interfering aspects, discuss the encountered language limitations,
suggest possible language improvements where appropriate and present some
preliminary performance measurements. Section 5 comments on related work
and the last two sections present the conclusions and future work.

2 Background on Transactional Systems

We present the context of our case study in this section of the paper. The
concepts of transactional systems, concurrency control, and recovery strategies
relevant to this work are presented in subsections 2.1, 2.2, and 2.3 respectively.

2.1 Transactional Objects

A transaction [7] groups together an arbitrary number of operations on trans-
actional objects, which encapsulate application data, ensuring that the effects of
the operations appear indivisible with respect to other concurrent transactions.
The transaction scheme relies on three standard operations: begin, commit, and
abort, which mark the boundaries of a transaction. After beginning a new trans-
action, all update operations on transactional objects are done on behalf of that
transaction. At any time during the execution of the transaction it can abort,
which means that the state of all accessed transactional objects is restored to
the state at the beginning of the transaction (also called rollback). Once a trans-
action has completed successfully (is committed), the effects become permanent
and visible to the outside.

Classic transaction models typically assume that each transaction is executed
by a single thread of control. In recent years however, advanced multi-threaded
transaction models have been proposed. Our case study implements the Open
Multithreaded Transaction model [8,9], which allows several participants (threads
or processes) to enter the same transaction in order to perform a joint activity.

The ACID Properties Transactions focus on preserving and guaranteeing
important properties of application data, assuming that all the information is
properly encapsulated inside transactional objects. These properties are referred
to as the ACID properties: Atomicity, Consistency, Isolation and Durability [7].

Atomicity ensures that from the outside of a transaction, the execution of the
transaction appears to jump from the initial state to the result state, without any
observable intermediate state. Alternatively, if the transaction can not be com-
pleted for some reason, it appears as though it had never left the initial state.

This all -or -nothing property is unconditional, i.e. it holds whether the trans-
action, the entire application, the operating system, or any other components
function normally, function abnormally, or crash.

The consistency property states that the application data always fulfill the
validity constraints of the application. To achieve this property, transaction sys-
tems rely on the application programmer to write consistency preserving trans-
actions. In this case, a transaction starts with a consistent state, and recreates
that consistency after making its modifications, provided it runs to completion.
The transaction system guarantees only that the execution of a transaction will
not erroneously corrupt the application state.

The isolation property states that transactions that execute concurrently do
not affect each other. In other words, no information is allowed to cross the
boundary of a transaction until the transaction completes successfully.

Durability guarantees that the results of a committed transaction remain
available in the future: the system must be able to re-establish a transaction’s
results after any type of subsequent failure.

Atomicity and isolation together result in transaction serializability [10],
guaranteeing that any result produced by a concurrent execution of a set of
transactions could have been produced by executing the same set of transac-
tions serially, i.e., one after the other, in some arbitrary order.

When a participant calls a method on a transactional object, the underlying
transaction support must take control and perform certain actions to ensure that
the ACID properties can be guaranteed. Traditionally, this activity has been
divided into concurrency control and recovery activities, which are described in
the next two subsections.

2.2 Concurrency Control

Concurrency control is that part of the transaction run-time that guarantees
the isolation property for concurrently executing transactions, while preserving
data consistency. In order to perform concurrency control, conflicting operations,
i.e. operations that could jeopardize transaction serializability when executed by
different transactions, have to be identified.

The simplest form of concurrency control among operations of a transactional
object is strict concurrency control. It distinguishes read, write, and update op-
erations. Reading a value from a data structure does not modify its contents,
writing a value to the data structure does. Reading, and subsequently writing a
data structure is called updating. The conflict table of read, write, and update
operations is shown in Table 1. There exist more advanced techniques of con-
structing a conflict table that take into account the semantics of operations [11],
but they are out of the scope of this paper.

At run-time, concurrency control is performed by associating a concurrency
manager with each transactional object. The manager uses the conflict table to
isolate transactions from each other. This can be done in a pessimistic (conserva-
tive) or optimistic (aggressive) way, both having advantages and disadvantages.

read write/update
read no yes

write/update yes yes

Table 1. Strict Concurrency Control Conflict Table

Pessimistic Concurrency Control The principle underlying pessimistic
concurrency control schemes [7] is that, before attempting to perform an oper-
ation on any transactional object, a transaction has to get permission to do so
from the concurrency control manager. The manager then checks if the operation
would create a conflict with other uncommitted operations already executed on
the object on behalf of other transactions. If so, the calling transaction is blocked
or aborted.

Optimistic Concurrency Control With optimistic concurrency control
schemes [12], transactions are allowed to perform conflicting operations on ob-
jects without being blocked, but when they attempt to commit, the transactions
are validated to ensure that they preserve serializability. If a transaction passes
validation successfully, it means that it has not executed operations that conflict
with operations of other concurrent transactions. It can then commit safely. A
distinction can be made between optimistic concurrency control schemes based
on the validation technique used in determining conflicts. Forward validation en-
sures that committing transactions do not invalidate the results of other transac-
tions still in progress. Backward validation ensures that the result of a commit-
ting transaction has not been invalidated by recently committed transactions.

Concurrency Control and Versioning In order to avoid rejecting opera-
tions that arrive out of order, several concurrency protocols have been proposed
that maintain multiple versions (copies of the state) of objects [13,14,15]. For
each update or write operation on an object, a new version of the object is
produced. Read operations are performed on an appropriate, old version of the
object, thereby minimizing the interactions between read-only transactions and
write/update transactions. Versions are transparent to transactions: objects ap-
pear to them as only having a single state.

Concurrency Control and Multithreaded Transactions Advanced
transaction models such as Open Multithreaded Transactions allow several threads
to perform work within the same transaction. These threads should not be iso-
lated from each other. On the contrary, they should be allowed to see each
other’s state changes. However, concurrency control must still guarantee data
consistency by ensuring that all modifications are performed in mutual exclu-
sion.

2.3 Recovery

Recovery takes care of atomicity and durability of state changes made to trans-
actional objects by transactions in spite of sophisticated caching techniques and
system failures. In other words, recovery must make sure that either all modi-
fications made on behalf of a committing transaction are reflected in the state

of the accessed transactional objects, or none is, which means that any partial
execution of state modifying operations has to be undone.

Recovery actions have to be taken in two situations: on transaction abort
and in case of a system failure. Recovery strategies are either based on undo
operations, or redo operations, or both. Supporting both operations allows the
cache management to be more flexible.

In order to be able to recover from a system failure, the recovery support must
keep track of the status of all running transactions and of the modifications that
the participants of a transaction have made to the state of transactional ob-
jects. Depending upon the meta-data available about the performed operations,
whether a simple read/write classification or a more thorough semantic descrip-
tion, different kind of information will need to be kept. This so-called transaction
trace must be stored in a log, i.e. on a stable storage device [16] that is not af-
fected by system failures. Once the system restarts, the recovery support can
consult the log and perform the cleanup actions necessary to restore the system
to a consistent state.

In-place Update and Deferred Update There exist two different strate-
gies for performing updates and recovery for transactional objects, namely in-
place update and deferred update.

When using in-place update, all operations are executed on one main copy
of a transactional object. The effects of the operation invocation are therefore
potentially visible to all following operation invocations, even those made on
behalf of other transactions. In order to be able to undo changes in case of
transaction abort, a backup copy, snapshot or checkpoint of an object is made
before a transaction modifies the object’s state.

When using deferred update, each modifying transaction executes operations
on a different copy of the state of a transactional object. Therefore, until it
commits, a transaction’s changes are not visible to other transactions. When it
does commit, the effects of its operations are applied to the original object either
by explicitly copying the state, or by reapplying the transaction’s operations on
the main copy.

2.4 Putting Things Together

In order to guarantee the ACID properties, each time a method is invoked on a
transactional object the following actions must be taken:

1. Concurrency Control Prologue: The concurrency control associated with the
transactional object has to be notified of the method invocation to come.
Pessimistic concurrency control schemes will use this opportunity to block
or abort the calling transaction in case of conflicts.

2. Recovery Prologue: The recovery manager has to be notified in order to
collect information for undoing the method call in case the transaction aborts
later on.

3. Method Execution: The actual method call is executed.

4. Recovery Epilogue: The recovery manager has to be notified to gather redo
information, if necessary.

5. Concurrency Control Epilogue: The concurrency control has to be notified
that the method execution is now over.

Every transaction has to also remember all accessed transactional objects. When
a transaction commits or aborts, it has to notify the concurrency control and
recovery managers of each object of the transaction outcome.

3 The AspectOptima Framework

As shown in [4], transactions can not be transparently added to an application.
Yet once the programmer has decided to use transactions in his application,
and decided upon transaction boundaries, and determined the state that has
to be encapsulated in transactional objects, it is possible to provide a middle-
ware/framework/library that provides the run-time support for transactions.
Optima [9,17] (OPen Transaction Integration for Multi-threaded Applications)
is an object-oriented framework providing such support.

In this paper we present the design of AspectOptima, a purely aspect-
oriented framework ensuring the ACID properties for transactional objects. We
present the design rationale of our framework in section 3.1; Section 3.2 de-
scribes each of the ten base aspects of AspectOptima and section 3.3 describes
how these aspects can be combined to implement different concurrency control
and recovery strategies for transactional objects.

3.1 Design Rationale

At a higher level, concurrency control and recovery can be seen as two completely
separate concerns. As explained in the previous section, there are different ways
of performing concurrency control and recovery, and, depending on the applica-
tion, a developer might want to choose one technique over the other to maxi-
mize performance. Based on our experience of implementing the object-oriented
Optima, we know that, at the implementation level, concurrency control and
recovery cannot be separated completely from each other. There may be con-
flicts between the two, since not all combinations of concurrency control and
recovery techniques mentioned before successfully provide the ACID properties.
For example, most optimistic concurrency control techniques do not work with
in-place update. There is also overlap between the two, since both techniques
have to gather similar run-time information in order to correctly perform con-
currency control and recovery. For example, they both need to distinguish read
from write/update operations.

Motivated by this incomplete separation of concerns, we applied aspect-
oriented reasoning to decompose concurrency control and recovery further, and
identified a set of ten aspects, each providing a specific sub-functionality. We
did not follow any particular aspect-oriented design technique to determine the

functionality and scope of each aspect. Instead we relied on our object-oriented
experience in implementing the ACID properties to identify and modularize
reusable crosscutting functionality within aspects. Each of these aspects provides
a well-defined common functionality, which, as it turns out, is often needed in
non-transactional applications as well. In order to allow the aspects to be used
in other contexts, they have been carefully designed to be reusable.

3.2 Ten Individually Reusable Aspects

This section describes each of the ten base aspects of AspectOptima. The moti-
vation for each aspect is given, together with a brief summary of its functionality.
Then the dependencies of the aspect are listed, i.e. what other base aspects the
current aspect depends on, and to what other aspects the current aspect pro-
vides essential functionality. Situations of aspect interference, i.e. aspects that
have to modify their behavior in order to continue to provide their functionality
in the presence of other aspects, are pointed out. Finally, at the end of each
aspect description, we sketch examples of how the aspect could be used in a
stand-alone way to convince the reader of its reuse potential.

AccessClassified

Motivation. Concurrency control and recovery can be done more efficiently if
the operations of transactional objects are classified according to how they affect
the object’s state: read operations (observers) — operations that do not modify
the state of an object, write operations, and update operations (modifiers) —
operations that read and write the state of an object.

The AccessClassified aspect provides this classification for methods of an
object. Ideally, the classification of the operations should be done automatically.
However, some implementations might require assistance from the developer.
In such a case, the aspect should detect obvious misclassifications and output
warnings.

Summary of Functionality of AccessClassified
• Every method of the object must be classified as either a read, write or

update operation. This functionality can, for instance, be provided by
an operation Kind getKind(Method m).

Dependencies of AccessClassified
• Depends on: –
• Interferes with: –
• Is used by: Shared, Tracked, AutoRecoverable, Concurrency Control,

Recovery

Reusability of AccessClassified. The information provided by AccessClassified is
very useful in many contexts. It could be exploited in multi-processor systems
to implement intelligent caching strategies, or help to choose among different
communication algorithms and replication strategies in distributed systems.

Named

Motivation. One of the fundamental properties of an object is its identity. Iden-
tity is the property that distinguishes an object from all other objects. It makes
the object unique. At run-time, a reference pointing to the memory location at
which the state of an object is stored is often used to uniquely identify an object.

The lifetime of transactional objects, however, is not linked to the lifetime
of an application, even less to a specific memory location. Since the state of a
transactional object survives program termination, there must be a unique way
of identifying a transactional object that remains valid during several executions
of the same program. This identification means must allow the run-time support
to retrieve the object’s state from a storage device or database. Also, depending
on the chosen concurrency control and recovery techniques, there might exist
multiple copies of the state of a transactional object in memory at a given time.
These multiple copies, however, represent in fact one application object.

Previous work [18] has shown that an object name in the form of a string is
an elegant solution for uniform object identification. We can therefore define a
Named property or aspect for objects. A named object has a name associated
with its identity. A name must be given to the object at creation time. The name
remains valid throughout the entire lifetime of the object. At any time it should
be possible to obtain the name of a given object, or retrieve the object based on
its name.

Summary of Functionality of Named
• All creator operations must associate a unique name with the object

that is created.
• Object getObject(String s) and String getName(Object o)

operations map from an object to a name and vice versa.

Dependencies of Named
• Depends on: –
• Interferes with: –
• Is used by: Tracked, Persistent

Reusability of Named. Named can be used as a stand-alone aspect whenever
the logical lifetime of an object does not coincide with the actual lifetime of its
pointer into memory. For instance, one might like to destroy large, referenced
but empirically unused objects and recompute them if needed. A name can also
be used as a key to retrieve the state of an object from a database.

Shared

Motivation. Transactional objects are shared data structures. To conserve data
consistency it is important to prevent threads from concurrently modifying an
object’s state. Such a situation could arise when participants of the same trans-
action want to simultaneously access the same object1.

The Shared aspect ensures multiple readers/single writer access to objects —
all modifications made to the state of a shared object are performed in mutual
exclusion.

Summary of Functionality of Shared
• Before executing the method body of a shared object, a read lock or

write lock has to be acquired.
• When returning from the method, the previously acquired lock has to

be released.

Dependencies of Shared
• Depends on: AccessClassified
• Interferes with: –
• Is used by: Concurrency Control, Recovery

In order to maximize throughput and hence optimize performance, Shared needs
the semantic information of each method of the object provided by AccessClas-
sified. If this information is not available, Shared must make worst case assump-
tions, i.e. assume that all methods of the object are in fact write or update
operations.

All concurrency control schemes rely on Shared to provide consistency of
data updates in spite of simultaneous accesses made by participants of the same
transaction.

Reusability of Shared. Shared can be used as a stand-alone aspect in any con-
current application to guarantee data consistency of shared objects.

Copyable

Motivation. An object encapsulates state. The state of an object is initialized
at creation time and can be altered by each method invocation. In a sense, the
state of an object is its memory.

Sometimes it is necessary to duplicate an object, or replace an object’s state
with the state from another object. This functionality is offered by Copyable.
1 The functionality offered by Shared is not to provide isolation among threads run-

ning in different transactions, but mutual exclusion among threads of the same
transaction. This functionality is transaction specific, and can be implemented in
many different ways. We will show later how isolation can be achieved by combining
several of the ten base aspects, such as demonstrated in LockBased, MultiVersion,
and Optimistic (see section 3.3).

Summary of Functionality of Copyable

• Object clone() creates an identical copy of the object.
• replaceState(source) copies the state of source over the state of the

current object.
There is no obvious answer to the question whether to perform a deep copy or
a shallow copy of the state of an object. When an object A stores in its state a
reference to an object B, deep copy also clones / replaces the state of B when
cloning / replacing the state of A. Recursively, if B refers to other objects, they
are cloned / replaced as well. Shallow copy, on the other hand, only clones /
replaces the state of A. Which technique is ideal depends on the application.
Sometimes, an application might even want to handle different classes / objects
in different ways. A flexible implementation of Copyable should therefore provide
a default technique, but allow the user to override the default behavior if needed.

Dependencies of Copyable

• Depends on: –
• Interferes with: Shared
• Is used by: Serializable, Versioned

Copyable should detect the presence of Shared. In a multi-threaded environment,
the state of a shared object can only be copied when no other thread is modifying
it.

Reusability of Copyable. Copyable is used whenever an object’s state must be
copied into another object of the same class. This situation arises whenever an
object needs to be duplicated, e.g. for caching or replication. It is so often encoun-
tered that most programming languages provide the functionality of Copyable
within the language (e.g. the Java Object clone() method that can be invoked
on all objects that implement the Cloneable interface).

Serializable

Motivation. When an object is created, its state is in general stored in main
memory. Whenever the object’s state has to be moved to a different location,
e.g. to a file, a database, or over the network to a different machine, the in-
memory representation of the state of the object has to be transformed to suit
the representation required by the destination location.

Serializable provides this functionality. A serializable object knows how to
read its state from and write its state to backends requiring varying data repre-
sentation formats. It is an incarnation of the Serializer pattern described in [19].
Just like with Copyable, serialization can be deep or shallow. Again, the ideal way
of performing serialization is application-dependent. Serializable should there-
fore be customizable to specific application needs.

Summary of Functionality of Serializable
• readFrom(reader) restores the state of the object by reading it from a

backend.
• createFrom(reader) creates a new object and initializes it with the

state read from a backend.
• writeTo(writer) saves the state of the object to a backend.

Dependencies of Serializable
• Depends on: Copyable
• Interferes with: Shared, Named
• Is used by: Persistent

Serializable should detect the presence of Shared. In a multi-threaded environ-
ment, a shared object should only be serialized when no other thread is modifying
it. Serializable should also detect the presence of Named, and serialize the name
together with the object’s state.

Reusability of Serializable. Serializable can be used in many situations, e.g.,
for writing an object’s state to a file, sending the state over the network, or
displaying an object’s state. Serialization is so handy that modern programming
languages usually provide a default serialization implementation for objects. The
default serialization can usually be overridden with customized serialization, if
needed.

Versioned

Motivation. During execution, each transaction must have its own view of the
set of objects it accesses. Every thread participating in a transaction should see
updates made by other participants, but not updates made from within other
transactions. This is why multi-version concurrency control strategies, as well as
snapshot-based recovery techniques have to create multiple copies of the state
of a transactional object in order to isolate state changes made by different
transactions from each other.

This functionality is provided by Versioned. A Versioned object can encap-
sulate multiple copies — versions — of its state. Versions are linked to views,
one of which is the default main view. If a main view isn’t explicitly designated,
the original state of the object when it was created becomes the default view. A
thread can subscribe to a view, and any method call made subsequently by the
thread is directed to the associated version. A call coming from a thread that is
not part of a specific view is forwarded to the main view.

Summary of Functionality of Versioned
• Version newVersion() creates a new version. The returned Version

object is a “handle” to the newly created version.
• deleteVersion(Version v) deletes the version v.

• View newView(), joinView(View v), leaveView() and deleteView(View
v) allow a thread to create, join, leave, or delete a view. Views are
nestable, meaning that if a thread joins view A and then later creates a
new view B, and then leaves view B, it should end up back in view A.

• Version getCurrentVersion() queries the current version assigned to
the view of the calling thread.

• setCurrentVersion(Version v) assigns the version v to the view of
the calling thread.

• setMainView(View v) designates a view to be considered the main one.
• Any method invocation on the transactional object are directed either

to the version of a particular view, if the calling thread has joined a
specific view, or else by default to the main view.

Dependencies of Versioned
• Depends on: Copyable
• Interferes with: –
• Is used by: Recoverable, Concurrency Control

Versioned requires the presence of Copyable in order to duplicate the object’s
state when a version is created. Versioned interferes with Shared : only when
no other thread is currently modifying the object’s state a new version can be
created. Fortunately Copyable should take care of this interference already, and
therefore the interference between Versioned and Shared is only indirect.

Versioned is used by multi-version and optimistic concurrency control schemes,
as well as by Recoverable for snapshot-based recovery. The optimistic concur-
rency control presented in section 3.3, for instance, updates the main version of
a Versioned object after successful validation of a committing transaction and
deletes all non-main versions created by this transaction.

Reusability of Versioned. Versioned can be used as a stand-alone aspect in any
application requiring transparent handling of multiple instances of an object’s
state. For instance, if an editor is extended to support different views for a single
document, Versioned can be used to make different instances of the toolbar act
on the correct view even though the toolbar source code refers to a single global
variable.

Tracked

Motivation. To guarantee the ACID properties, the transaction run-time has
to keep track of state access. The Tracked aspect provides the functionality to
monitor object access in a generic way. It allows a thread to define a region in
which object accesses are monitored. The region is delimited by begin and end
operations. At any given time, the thread can obtain all read or modified objects
for the current region.

Summary of Functionality of Tracked
• TrackedZone beginTrackedZone(), joinTrackedZone(TrackedZone z),
leaveTrackedZone() and endTrackedZone()
operations are provided that delimit the regions in which object access
is to be monitored. Just like views, zones should be nestable. When a
thread joins zone A, and then later zone B, and then leaves B, it should
end up back in A.

• All accesses to a Tracked object from within a zone is monitored.
• Object[] getAccessedObjects(), Object[] getReadObjects() and
Object[] getModifiedObjects() operations that return the set of ac-
cessed, read or modified objects of the current zone. Note that if nesting
of zones is supported, then read or modified objects of a child zone have
to be included when returning the set of read or modified objects of the
parent.

Dependencies of Tracked
• Depends on: AccessClassified, Named
• Interferes with: Versioned
• Is used by: Concurrency Control, Recovery

In order to distinguish observer and modifier methods, Tracked depends on the
presence of AccessClassified. Since it is not necessary to track accesses to different
copies of the same application object, Tracked should detect the presence of
Versioned. Using Named it is possible to compare the object names instead of
object references to avoid duplicate counting.

Tracked is used by the transaction support run-time to notify the concur-
rency controls of all accessed objects when a transaction commits or aborts.
The recovery manager uses Tracked to identify all objects whose state has been
modified and therefore must be made persistent (or rolled back in case of an
abort). In this case, the tracked zone begins when the transaction begins, and
ends when the transaction ends.

Reusability of Tracked. Tracked can be used in a stand-alone way to monitor
object access made by arbitrary pieces of code, for instance for the sake of
logging and debugging. As another example, an implementation of the model-
view-controller pattern [20] could use Tracked to maintain a dirty list of the
parts of the model which changed since the view was last redrawn.

Recoverable

Motivation. The transaction run-time must be able to undo state changes made
on behalf of a transaction when it aborts. Recoverable provides that functionality.

A recoverable object [21] is an object whose state can be saved and later
on restored, if needed. Saving is sometimes also referred to as establishing a
checkpoint; it is usually performed when the object is in a consistent state. Once

saved, the state of the object can be restored at any time. It is possible to
establish multiple checkpoints of the state of an object.

To implement checkpointing, this version of Recoverable takes a snapshot of
the state of an object. In the future we might want to support logical recovery
as well (see section 7).

Recoverable should support both in-place and deferred update strategies (see
section 2.3). To support nested transactions it must be possible to establish
multiple checkpoints for a single object. In case of in-place update, this creates
a “sequence” of checkpoints, i.e. each checkpoint has at a given time at most one
predecessor and one follower. In case of deferred update, a “tree” of checkpoints
is created.

Summary of Functionality of Recoverable

• Checkpoint establishCheckpoint() creates a checkpoint. Depending
on the chosen update strategy, Recoverable either makes sure that all
views continue to point to the original copy of the object (in-place up-
date), or creates a new version of the object and assigns it only to the
view associated with the calling thread (deferred-update).

• restoreCheckpoint(Checkpoint c) restores the object’s state to the
state of a previously established checkpoint c. If no checkpoint is given
as a parameter, then strict nesting of checkpoints is assumed, and the
latest checkpoint is discarded.

• discardCheckpoint(Checkpoint c) discards a checkpoint c. If no check-
point is given as a parameter, then strict nesting of checkpoints is as-
sumed, and the latest checkpoint is discarded.

• setDeferred(boolean On) switches between in-place and deferred-update
mode.

Dependencies of Recoverable

• Depends on: Versioned
• Interferes with: –
• Is used by: AutoRecoverable, Recovery

Recoverable depends on Versioned to provide snapshot-based checkpointing. It
indirectly interferes with Shared : only when no other thread is currently modify-
ing the object’s state a checkpoint should be established. Fortunately Versioned
should take care of this interference already.

Reusability of Recoverable. Recoverable can be used in any application that wants
to be able to recover a previous state of an object. For instance, it can be used
to implement a simple undo functionality.

AutoRecoverable

Motivation. In order to be able to rollback the state of an application when a
transaction aborts, all accesses to transactional objects have to be monitored,
and when an object is going to be modified for the first time from within the
transaction, a checkpoint has to be established.

The AutoRecoverable aspect provides such region-based recovery. It allows
a thread to define a region in which object access is monitored. The region is
delimited by begin and end operations. Within a region, before any modifications
are made to an object’s state, a checkpoint is established automatically.

Summary of Functionality of AutoRecoverable
• beginRecoverableZone(), joinRecoverableZone(RecoverableZone z),
leaveRecoverableZone() and endRecoverableZone() operations that
delimit the regions in which object access is to be monitored for the cur-
rent thread. Zones should be nestable.

• Whenever an auto-recoverable object is modified for the first time from
within a zone, a checkpoint of the object has to be established.

Dependencies of AutoRecoverable
• Depends on: Recoverable, AccessClassified
• Interferes with: –
• Is used by: Recovery

AutoRecoverable depends on Recoverable to provide undo functionality for the
object. It also depends on AccessClassified to determine if an operation is mod-
ifying the object’s state or not.

Reusability of AutoRecoverable. AutoRecoverable can be used in any application
that wants to be able to recover state changes made by arbitrary pieces of code.
For instance, it can be used to undo the operations of a user-defined command
manipulating an unknown subset of the application objects.

Persistent

Motivation. Persistent objects are objects whose state survives program termi-
nation. To achieve this, persistent objects know how to write their state to stable
storage [16], i.e. a reliable secondary storage such as a mirrored hard disk or a
database. Subsequently, it is possible to reinitialize the object’s state based on
the content of the storage device.

Summary of Functionality of Persistent
• All creator operations (constructors) of the object must associate a well-

defined location on a storage device with the object.
• Operations to load/save the state of the object from/to the associated

storage device
• An operation to destroy a persistent object. When the object ceases to

exist, the space on the associated storage device has to be freed as well.

Dependencies of Persistent
• Depends on: Serializable, Copyable, Named
• Interferes with: Versioned, Recoverable
• Is used by: Recovery

Persistent requires the presence of Serializable in order to transform the object’s
state into a flat stream of bytes. Persistent requires the presence of Named. It
assumes that the object’s name designates a valid location on a secondary storage
device. Persistent should know how to handle the presence of Versioned, since
in general, there is a “main” version that contains the state of the object that
is currently considered the correct one. Persistent should know how to handle
the presence of Recoverable. When a recoverable object is made persistent, all
checkpoints have to be made persistent as well. Persistent indirectly interferes
with Shared. Only when no other thread is modifying the state of the object,
Persistent should load or save the state of the object. Fortunately Serializable
should take care of this interference already.

Persistent is used by the recovery manager to write the old and new state of
a transactional object to stable storage before the transaction commits. It is also
used by the recovery manager to write information used to achieve tolerance to
crash failures to the system log.

Reusability of Persistent. Persistent can be used in any application where an
object’s state has to survive program termination and hence has to be stored
on some non-volatile storage device. To support many different storage devices,
Persistent should be used in combination with a persistence framework such as
[18].

Comments on Persistent. The Persistent aspect on its own only supports explicit
persistence, i.e., the Persistent aspect has to be explicitly applied to every object
that is to be made persistent. Also, loading and saving of the state of the object
has to be done explicitly by invoking the corresponding method.

In a programming language providing orthogonal persistence [22], persistent
data is created and used in the same way as non-persistent data. Loading and
saving of values does not alter their semantics, and the process is transparent to
the application program. Whether or not data should be made persistent is often
determined using a technique called persistence by reachability. The persistence
support designates an object as a persistent root and provides applications with
a built-in function for locating it. Any object that is “reachable” from the per-
sistent root, for instance by following pointers, is automatically made persistent.
Providing orthogonal persistence and persistence by reachability is out of the
scope of the AspectOptima framework.

Dependency and Interaction Summary Fig. 1 shows a UML class diagram
that depicts the different relationships among the ten base aspects. Dependencies
between aspects are shown on the left, interference between aspects on the right.
The aspects that have to intercept calls to objects are stereotyped < <i> > (for

AccessClassified Named Copyable

Serializable<<i>> Tracked <<i>> Versioned

Persistent

<<i>> Shared

Recoverable

AccessClassified NamedCopyable

Serializable<<i>> Tracked <<i>> Versioned

<<i>> AutoRecoverable

PersistentConcurrency
Control

<<i>> Shared

Recovery

Recoverable

Dependencies Interference<<i>> AutoRecoverable

Fig. 1. Aspect Dependencies and Interferences

interceptors). They all apply to the same join points, i.e. they have to intercept
all public method calls to the object they apply to. As mentioned before, the
order in which they intercept is important.

The right hand side of the diagram also shows two UML notes labeled Con-
currency Control and Recovery. These show how the ten base aspects relate to
concurrency control and recovery strategies. The aspects that have italic names
are those aspects that are used directly or indirectly by both concurrency con-
trol and recovery. They represent the implementation overlap between the two
high-level concerns mentioned in section 3.1.

3.3 Aspect Compositions

This section describes how the aforementioned base aspects can be combined to
implement different concurrency control and recovery strategies for transactional
objects. Each of the following aspects requires that all transactional objects
are AccessClassified, Named, Copyable, Serializable, Shared, Versioned, Tracked,
Recoverable, AutoRecoverable, and Persistent2. The aspects also assume that the
transaction run-time creates a tracked zone, a recoverable zone and a new view
when a transaction begins, and ends the tracked zone, the recoverable zone and
the view when a transaction commits or aborts.

Pessimistic Lock-Based Concurrency Control with In-Place Update
This subsection describes the design of the LockBased aspect, which implements
pessimistic lock-based concurrency control. Lock-based protocols use locks to
implement permissions to perform operations. When a thread invokes an oper-
ation on a transactional object on behalf of a transaction, LockBased intercepts
the call, forcing the thread to obtain the lock associated with the operation. The
kind of lock — read, write or update — is chosen based on the information pro-
vided by AccessClassified. Before granting the lock, LockBased verifies that this
new lock does not conflict with a lock held by a different transaction in progress.
If a conflict is detected, the thread requesting the lock is blocked and has to wait
for the release of the conflicting lock. Otherwise, the lock is granted. LockBased
then makes sure that in-place update has been selected for this object by calling
Recoverable, and allows the call to proceed.
2 The functionality provided by Persistent is not used in the examples shown in this

section. Actually, persistency is mostly required at commit time of a transaction as
shown in section 4.3.

:LockBased :AccessClas:Tracked :Named :AutoRec :Shared :TAObject

op(..)
getKind(op)

op(..)
getName()

op(..)

establish()

:Recoverable

setDeferred(false)

:Versioned :Copyable

newVersion()
replaceState()

op(..)

op(..)
getKind(op)

op(..)

getKind(op)

getKind(op)

setCurVersion()

Fig. 2. Aspect Interactions for LockBased Objects

The order in which locks are granted to transactions imposes an execution
ordering on the transactions with respect to their conflicting operations. Two-
phase locking [23] ensures serializability by not allowing transactions to acquire
any lock after a lock has been released. This implies in practice that a transaction
acquires locks during its execution (1st phase), and releases them at the end once
the outcome of the transaction has been determined (2nd phase).

To release all acquired locks when a transaction ends, all transactional ob-
jects that are accessed during a transaction have to be monitored. To this end,
LockBased depends on Tracked to intercept the call and record the access. Ob-
viously, an object should be tracked only after a lock has been granted.

Next, LockBased depends on AutoRecoverable to intercept the call and to
checkpoint the state of the transactional object, if necessary, before it is modified.
Since we are using in-place update, Versioned then directs the operation call to
the main copy of the object. Finally, Shared intercepts the call and makes sure
that no two threads running in the same transaction are modifying the object’s
state concurrently.

After the method has been executed, Shared releases the mutual exclusion
lock. The transactional lock, however, is held until the outcome of the transaction
is known. Fig. 2 illustrates this interaction; the sequence diagram depicts how
a call to a transactional object is intercepted, and how the individual aspects
collaborate to provide the desired functionality.
Comments on LockBased. The design of LockBased is currently very simple. It
does not support upgrading or downgrading of locks. Also, LockBased currently
does not detect deadlock. Deadlock situations can happen with any blocking
pessimistic concurrency control in case there are circular dependencies between
transactions. Deadlock detection can therefore be seen as a crosscutting function-

ality, and could therefore be added as yet another base aspect to AspectOptima.
Starvation is prevented in LockBased if the locks are granted in a strict FIFO
ordering.

Pessimistic Multi-version Lock-Based Concurrency Control with In-
Place Update One drawback of standard lock-based concurrency control is
that read-only transactions, i.e. transactions that only invoke observer meth-
ods on transactional objects, can be blocked by update transactions. This is
especially annoying in applications where there are many short-lived read-only
transactions, but only a few long-lived update transactions.

The MultiVersion aspect addresses this problem by implementing multi-
version lock-based concurrency control with in-place update. MultiVersion relies
on the fact that the transaction run-time knows how to classify transactions into
read-only transactions and update transactions, i.e. transactions that write (and
potentially read) the state of an object. MultiVersion also assumes that it is
possible to assign timestamps with transactions.

MultiVersion keeps multiple versions of the state of a transactional object
in memory — the “history” of committed states of an object, so to speak. Each
version is annotated with a logical time interval during which that state was
valid.

Update transactions are handled just as in LockBased. First, MultiVersion
tries to acquire a write lock on the object. If no other transaction is currently
modifying the object’s state, then the lock is granted; otherwise, the calling
thread is suspended. Once the lock is granted, MultiVersion relies on Tracked to
record the access. If this is the first write performed on behalf of the transaction,
AutoRecoverable checkpoints the object’s state using in-place update, creating
a new version. Versioned then directs the call to the new copy of the object,
and finally Shared intercepts the call and makes sure that no two threads are
modifying the object’s state concurrently.

After the call has been executed, Shared releases the mutual exclusion lock.
Future updates performed by the same transaction are automatically directed
by Versioned to this version.

When an update transaction commits, MultiVersion assigns it a new logical
timestamp, and adds the new committed state to the history of states, annotated
with the new timestamp.

Read-only transactions are handled differently. They are assigned logical
timestamps at creation time. They do not have to acquire any locks. MultiVer-
sion nevertheless has to intercept the call and look at the transaction timestamp.
It then finds the version with the highest timestamp that is lower than the trans-
action timestamp and assigns this version to the view of the transaction using
Versioned. The call then proceeds to Tracked, where the read access is recorded.
Then Versioned directs the call to the selected version. There is no need for
AutoRecoverable or Shared, since only read requests are directed to this version.

Fig. 3 illustrates the control flow through the aspects when a read or update
operation is invoked on a transactional object. The versions old1, old2, old3, and

main:TAObject

old3:TAObject

s:Shared

op(..)

old4:TAObject

[view]op(..)

old2:TAObject

[view]op(..)

old1:TAObject

[view]op(..)

v:Versioned

[view]op(..)

[view]op(..)

ar:AutoRecoverablet:Trackedm:MultiVersion

[read]op(..)

op(..)

[write]op(..) op(..)

ac:AccessClassified

getKind()

r:Recoverable

establish()

setDeferred(false)

n
e
w
V
e
rs
io
n
()

op(..)

[read]setCurrentView()

Fig. 3. Control Flow for Multi-Version Concurrency Control

old4 represent previously committed states of the transactional object. Since
they are only accessed by read operations, the Shared aspect is not needed
anymore. To optimize performance, the Shared aspect should be removed from
the main version as soon as an update transaction commits.

Optimistic Concurrency Control with Deferred Update and Backward
Validation The aspect Optimistic implements optimistic concurrency control
with deferred update and backward validation. When using optimistic concur-
rency control, the execution of each transaction is split into a read phase, a
validation phase, and a write phase. When a transaction starts, it remembers
the timestamp of the most recently committed transaction (Tstart). If and only
if a transaction passes the validation phase, it receives a timestamp of its own
and commits.

During the read phase, the transaction always reads the most recently com-
mitted states of transactional objects. Optimistic intercepts method calls to
transactional objects and queries AccessClassified to classify the call.

In case of a read, Optimistic passes the call along to Tracked to record the
read access. Versioned forwards the call to the current main version that contains
the most recently committed state. There is no need for AutoRecoverable to do
any work, nor is the presence of Shared required, since the call is read-only.

In case of a write or update operation3, Optimistic makes sure that deferred
update is selected by calling Recoverable, and then passes the call to Tracked.
Next, AutoRecoverable creates a new version of the transactional object, but
this time using deferred update. This ensures that subsequent reads made by
other transactions are still forwarded to the most recently committed version.
Versioned forwards the call to the newly created version, and Shared takes care
of ensuring mutual exclusion.

In case of a concurrent write made by a different transaction, AutoRecoverable
creates yet another version. Therefore, at a given time, there might exist multiple
uncommitted versions of a transactional object, each one belonging to a different
transaction.

The UML 2.0 communication diagram shown in Fig. 4 illustrates the control
flow through the aspects for read and update operations. In the depicted situa-
tion there are currently four active update transactions, each one having its own
local version of the transactional object’s state. Read access to the main version
does not flow through AutoRecoverable or Shared.
3 Note that we are still in the read phase of the transaction!

v1:TAObject

main:TAObject

s:Shared

op(..)

v2:TAObjects:Shared

op(..)

v3:TAObjects:Shared

op(..)

v4:TAObjects:Shared

op(..)

v:Versioned

[view]op(..)

[view]op(..)

[view]op(..)

[view]op(..)

[view]op(..)

ar:AutoRecoverablet:Trackedo:Optimistic

[read]op(..)

op(..)

[write]op(..) op(..)

ac:AccessClassified

getKind()

r:Recoverable

establish()

setDeferred(true)

n
e
w
V
e
rs
io
n
()

op(..)

Fig. 4. Control Flow for Optimistic Concurrency Control

In optimistic concurrency control schemes, a transaction has to pass valida-
tion before it can commit. During validation, Optimistic looks at the timestamp
of the most recently committed transaction (Tend). Optimistic then calculates
the union of all transactional objects updated by transactions Tstart+1 to Tend
using Tracked and intersects it with the set of objects read by the validating
transaction (backward validation).

If the intersection is non-empty, validation fails and the transaction has to
abort. Optimistic tells Recoverable to restore the checkpoints of all modified
objects, which results in deleting the local versions of the transaction.

If the intersection is empty, validation is successful. The transaction receives a
timestamp and proceeds to the write phase, in which Optimistic tells Recoverable
to discard the checkpoints of all modified objects. This results in committing the
local versions of the transaction and discarding the previous one.

3.4 Summary

Transaction systems in general implement the ACID properties by performing
concurrency control and recovery, each of which can be done using different
techniques. This separation of concerns is, however, not very clean. Concurrency
control and recovery can benefit from sharing parts of their implementation,
and certain combinations of concurrency control techniques conflict with certain
recovery techniques.

AspectOptima shows how aspect-oriented techniques can help to decompose
the implementation of the ACID properties into a set of fine-grained aspects.
The decomposition exhibits the following properties:
• Clear Separation of Concerns:

Each aspect provides a well-defined functionality. For example, Shared
takes care of ensuring mutual exclusion of state updates.

• High Reusability:
Each aspect can be used in other applications in a stand-alone way to
implement similar functionalities. For example, Recoverable can be used
to implement “undo” functionality.

• Complex Aspect Dependencies:
Some aspects cannot function properly without the functionality offered
by other aspects. For example, Persistent depends on the presence of
Named. It uses the object’s name to designate a valid location on a
secondary storage device.

• Complex Aspect Interference:
Some aspects have to adapt their functionality in the presence of other
aspects. For example, Copyable has to detect the presence of Shared,
and make sure that it only makes a copy of an object when no other
thread is modifying the object’s state.

4 Evaluating the Expressiveness of AO Languages with
AspectOptima

In this section, we demonstrate how AspectOptima can be used to evaluate
the expressiveness of the language features of an aspect-oriented programming
language, in particular those features concerned with aspect reuse, aspect depen-
dencies and interference. The language under study in our case is AspectJ [24].
The goal of this effort was not to implement AspectOptima in an elegant way
using the most appropriate aspect-oriented programming language. The idea was
rather to show how the exercise of implementing AspectOptima can highlight
the elegance or the lack of programming language features that can appropri-
ately address aspect dependencies and interference in a reusable way. We have
chosen to perform our implementation in AspectJ since it is currently one of the
most used languages with a mature and reliable compiler, and not because of
the features it provides.

This section is structured as follows. We outline the language requirements
necessary for implementing AspectOptima in subsection 4.1; a brief overview
of the AspectJ is presented in subsection 4.2. We present an AspectJ implemen-
tation of AspectOptima in subsection 4.3, discuss the encountered language
limitations of AspectJ, present some suggestions for language improvements in
subsection 4.4, and finally show some preliminary measurements that highlight
the performance impact of certain language features in subsection 4.5.

4.1 AspectOptima Implementation Language Requirements

One of the goals of AspectOptima is to define a framework that can be used to
evaluate and compare the expressiveness of language features of aspect-oriented
programming languages, in particular with respect to how they deal with com-
plex aspect dependencies and interactions in a reusable way. The key questions
an implementation has to address are:

• Can each of the aspects be implemented in a modular, stand-alone way?
To be considered modular, the implementation of an aspect should be
packaged in such a way that the package contains all the code needed
to implement the functionality. This simplifies adding and removing
of an aspect for application developers, and improves readability and
maintainability for aspect developers.

• Can each of the aspects be implemented in a reusable way? To be con-
sidered reusable, a developer that needs a functionality offered by one of

the aspects in his application should be able to integrate the function-
ality with minimal effort into his implementation by simply deploying
the aspect.

• Does the aspect-oriented programming language allow to specify differ-
ent aspect configurations and compositions of the ten base aspects? Can
different combinations be used within the same application? In aspect
frameworks it is likely that different aspect combinations are possible,
and could be useful at different places in the application.

• Is aspect configuration safe? Aspect deployment should not be error-
prone, i.e. it should not happen that an application developer can make
mistakes when deploying the aspect in his application.

• Can dependencies between aspects be handled in a transparent way? To
be considered transparent, a developer that needs a functionality offered
by one aspect should not have to explicitly deal with aspect dependen-
cies, i.e. when deploying an aspect A, all aspects that A depends on
should be automatically deployed as well.

• Can interferences between aspects be dealt with in such a way that the
aspect implementations are still individually reusable, i.e. there are no
direct dependencies among the aspect implementations due to aspect
interference? When two aspects interfere and additional behavior is re-
quired to address the interference, can this be dealt with in a transparent
way without bothering the application developer at configuration time?

Based on our experience, the following list summarizes what features an aspect-
oriented programming language and environment has to offer to make the im-
plementation of AspectOptima possible:

• Separate Aspect Binding:
In order to support reusability, reusable aspect implementations should
not contain explicit bindings to application elements. An application
developer has to be able to specify where an aspect is to be applied
when he composes his application.

• Inter-Aspect Configurability:
Some aspects have to be able to express their dependence on other
aspects. For example, Versioned can only be applied to objects that are
also Copyable.

• Inter-Aspect Ordering:
Some aspects need to specify the order in which other aspects get ap-
plied. For example, the aspect LockBased has to make sure that Tracked
records the object access only after a lock has been acquired.

• Per-Object (Per-Instance) Aspects:
An application programmer might want to use different concurrency con-
trol or recovery implementations for different objects of the same class.
It should therefore be possible to associate LockBased, MultiVersion,
and Optimistic to objects, not to classes. As a consequence, LockBased,
MultiVersion, and Optimistic have to be able to apply the aspects they
depend on to their object, not to the class.

• Dynamic Aspects:
In order to support flexible reuse, support for dynamic aspects is re-
quired, i.e., it should be possible to apply aspects to and remove as-
pects from objects at run-time. In AspectOptima, for example, in multi-
version concurrency control, the Shared aspect should be removed from
a version of a transactional object when it becomes read-only.

• Thread-Aware Aspects
In order to support flexible reuse in multi-threaded applications, it
should be possible to activate aspects on a per-thread basis. In As-
pectOptima, several aspects provide functionality based on the context
of the current thread. For instance, Tracked only tracks object accesses
if the current thread has previously started a tracked zone. AutoRe-
coverable only checkpoints objects if the current thread is within an
auto-recoverable zone.

Most of these requirements have been mentioned in the aspect-oriented literature
before (the interested reader is referred to the proceedings of the SPLAT (Soft-
ware Engineering Properties of Languages and Aspect Technologies) [25] and
FOAL (Foundations of Aspect-Oriented Languages) [26] workshops). The main
contribution here is that AspectOptima requires all of the features in order to
be implemented in an elegant reusable way.

4.2 AspectJ

We decided to validate the design of AspectOptima and test its effectiveness in
evaluating AOP language features by an implementation in AspectJ [24]. AspectJ
is an aspect-oriented extension of the Java [27] programming language. It was
conceived by a team of researchers at Xerox Parc, and is probably currently the
most popular AOP language. The version used for our experiments is version
1.5.2.

In AspectJ, crosscutting behavior is encapsulated in a class-like construct
called an aspect. Similar to a Java class, an aspect can contain both data members
and method declarations, but it cannot be explicitly instantiated. Four new
concepts introduced in AspectJ are relevant to this work, namely: join points,
pointcuts, advice, and inter-type declarations.

Join points are well-defined points in the execution of a program. These
include method and constructor calls, their executions, field accesses, object and
class initializations, and others. Only call and execution join points were essential
in our current implementation of AspectOptima.

A pointcut is a construct used to designate a set of join points of interest and
to expose to the programmer the context in which they occur, such as the current
executing object (this(ObjectIdentifier)), the target object of a call or execution
(target(ObjectIdentifier)) and the arguments of the a method call (args(..)).

An advice defines the actions to be taken at the join point(s) captured by
a pointcut. It consists of standard Java code. AspectJ supports three types of
advice: the before, the after, and the around advice. The before advice runs

just before the captured join point; the after advice runs immediately after the
captured join point; the around advice surrounds the captured join point and
has the ability to augment, bypass or allow its execution.

Finally, inter-type declarations allow an aspect to define methods and fields
for other classes.

The following paragraphs of this subsection present techniques and work-
arounds that can be used in AspectJ to achieve some of the requirements pre-
sented in section 4.1. It should be noted here that we did not choose AspectJ
because we expected it to be the ideal language for implementing AspectOptima.
To the contrary, there exist many other AOP languages that provide more ad-
vanced features and hence are probably more suitable. CaesarJ [28], for instance,
defines Aspect Collaboration Interfaces, which among many other benefits nicely
decouple aspect implementations from aspect bindings. Initial experiments with
CaesarJ however showed that the current compiler is not stable enough to build
a complex aspect framework such as AspectOptima.

Separate Aspect Binding and Inter-aspect Configurability In AspectJ,
the abstract introduction idiom (also known as indirect introduction) [29,30] can
be used to achieve separate aspect binding and inter-aspect configurability. The
abstract introduction idiom allows us to “collect several extrinsic properties from
different perspectives within one unit and defers the binding to existing objects”
[29]. In order words, the target classes of the static and dynamic crosscutting
behavior are unknown until weave-time. This strategy has three participants (see
Fig. 5):
• Introduction container : a construct used as the target for the inter-type

member declarations.
• Introduction loader : the aspect that introduces crosscutting behaviors

and ancestors to the introduction container.
• Container connector : the aspect used for connecting the introduction

container to the base application classes.

IntroductionContainer
(class or interface)

<<aspect>>
IntroductionLoader

<<introduction&advice>>

ApplicationClass
(class or interface)

<<aspect>>
ContainerConnector

<<bind>>

Fig. 5. Abstract Introduction Idiom

The introduction container serves a dual purpose in the context of our imple-
mentation. First, it enables the aspects (i.e., both static and dynamic crosscut-
ting behaviors) to be reused in different contexts; second, it helps in identifying
the classes to which the crosscutting behaviors of an aspect should be applied.

The introduction container can either be a class or an interface in AspectJ.
Since multiple inheritance is not supported in Java, our implementation can

not use a class as introduction container: it would prohibit several aspects to be
applied to the same application object. Consequently, dummy interfaces are used
as the introduction container for each of the aspects. For instance, the interface
IShared is associated with the aspect Shared, IAutoRecoverable is associated with
AutoRecoverable and so on. Each of the AspectOptima aspects, playing the role
of the introduction loader aspect, is then implemented to apply its functionality
to all the classes that implement its associated interface (e.g., the Shared aspect
is applied to all classes that implement the IShared interface).

Since all AspectOptima aspects declare dummy interfaces, separate aspect
binding can be achieved using the declare parents construct of AspectJ. The first
aspect in Fig. 6 brands the Account class as IShared ; hence, the crosscutting
behavior of the Shared aspect is applied to all instances of the Account class.

public aspect Binding {
declare parents: Account implements IShared;

}
public aspect AutoRecoverable{

declare parents: IAutoRecoverable implements IRecoverable, IAccessClassified;
}

Fig. 6. Separate Aspect Binding and Inter-aspect Configurability in AspectJ

Inter-aspect configurability is achieved by having the associated interface of
an aspect implement the interfaces of the aspects it depends on. For instance,
the AutoRecoverable aspect declares IAutoRecoverable to implement IAccess-
Classified and IRecoverable as illustrated in the second aspect of Fig. 6. Hence,
an AutoRecoverable object is by default Recoverable and AccessClassified. This
technique to achieve separate aspect binding and inter-aspect configurability
makes reuse very easy. Application developers do not have to modify their base
classes to apply aspects to them.

Inter-Aspect Ordering Inter-aspect ordering is supported in AspectJ by the
declare precedence construct. Fig. 7 illustrates how the LockBased aspect specifies
its execution order relative to that of the aspects it depends on.

AspectJ precedence declarations are application-wide. It is hence not possible
to declare, for instance, two different orderings of the same set of aspects for two
different pointcuts. In the current version of AspectOptima, however, such a
functionality is not necessary since MultiVersion and Optimistic depend on the
exact same ordering as LockBased. However, it is not guaranteed that this would
also be the case if the ten base aspects are reused within other applications.

Per-Object Aspects, Dynamic Aspects, and Per-Thread Aspects As-
pectJ does not support per-object aspects or dynamic weaving. Run-time en-
abling and disabling of aspects (i.e., advice within an aspect) can be simulated
by introducing a boolean field into each advised object. At each pointcut oc-

public aspect LockBased {
declare precedence: LockBased,AutoRecoverable,Tracked,Versioned,Shared;

}
Fig. 7. Inter-aspect Ordering in AspectJ

currence, the field is checked to verify that the aspect is actually enabled (see
subsection 4.3 for example code using this technique).

Per-thread aspects can be simulated by using the ThreadLocal class provided
by the Java standard library. Using ThreadLocal, it is possible to associate an
object with each thread instance. Within this object, boolean attributes can be
stored that can be consulted by the advice of an aspect in order to determine if
the aspect is enabled for the currently executing thread or not.

4.3 AspectJ Implementation of AspectOptima

In this section, we present a detailed description of the implementation of some of
the AspectOptima aspects in AspectJ. Due to space constraints, only the aspects
necessary to discuss the encountered AspectJ limitations, namely AccessClassi-
fied, Copyable, Shared, Tracked, and LockBased, are presented. The interested
reader is referred to [31] for a complete description of the implementation.

AccessClassified Implementation In our AspectJ environment (based on the
ajc compiler), it is not possible to statically determine if a method potentially
reads, writes or updates the fields of an object. Therefore, our implementation
of AccessClassified (see subsection 3.2) relies on the application developer to tag
every method of an object with marker annotations, such as the Read annotation
defined in the top lines of Fig. 8. The annotations have a run-time retention
policy (i.e., they are retained by the virtual machine so that they can be read
reflectively at run-time), can be inherited (i.e., annotations on superclasses are
automatically inherited by subclasses) and have to be applied to methods.

The AccessClassified implementation aspect shown in Fig. 8 introduces a
method (getKind(String methodName)) to every IAccessClassified object that
examines these annotations by reflection at run-time and classifies each opera-
tion accordingly. Non-annotated methods are treated as modifier operations to
guarantee system consistency. For an example of how a developer can classify
the operations of a class see section 4.3.

Another interesting possibility is to determine the access kind automatically
at run-time by tentatively executing the method and by intercepting all field
modifications (see [31] for details). It might also be possible to extend the flexible
AspectJ compiler abc [32] to perform an automatic classification based on static
code analysis.

Copyable Implementation The Copyable aspect (Fig. 9) introduces state re-
placement and cloning functionality to all classes that implement the ICopyable
interface. Java already provides a default clone() method for objects that im-
plement the Cloneable interface. However, this default method only implements

@Retention(RetentionPolicy.RUNTIME)
@Target(ElementType.METHOD)
@Inherited public @interface Read {}

public aspect AccessClassified {
public enum Kind {READ, WRITE, UPDATE);
boolean found = false;
public Kind IAccessClassified.getKind(String methodName)
throws MethodNotAnnotatedException, MethodNotFoundException{
for (Method m : this.getClass().getMethods()) {
if((methodName.trim()).equalsIgnoreCase(m.getName())) {
found = true;
if (m.isAnnotationPresent(Read.class)) return READ;
else if (m.isAnnotationPresent(Write.class)) return WRITE;
else return UPDATE;

}
}
if (!found) throw new MethodNotFoundException(".."); } }

Fig. 8. AspectJ implementation of AccessClassified

public aspect Copyable {
declare parents: ICopyable implements Cloneable;
public void ICopyable.replaceState(Object src) {
try {
copyFields(this,src);

} catch (SourceClassNotEqualDestinationClass e) {}
}
public Object ICopyable.clone() {
Object deepCopyOfOriginalObject = super.clone();
deepCopyOfOriginalObject.replaceState(this);
return deepCopyOfOriginalObject; } }

Fig. 9. AspectJ implementation of Copyable

shallow cloning. To provide deep cloning, some additional work is needed. The
replaceState(Object src) method enables an object to swap its state with
that of another object of the same class. The copyFields(this, src) helper
method performs a field-by-field deep-copy of the state (inherited, declared, and
introduced) of the source object to the invoking object (code not shown here for
space reasons).

Shared Implementation The implementation of the Shared aspect is pre-
sented in Fig. 10. This aspect depends on the method classification provided
by the AccessClassified aspect to determine the appropriate lock to be acquired
for a given operation. The declare parents construct used in line 2 illustrates
inter-aspect configuration by declaring all Shared objects to be AccessClassified
as well.

Lines 3-5 define a boolean field and two methods for supporting run-time dis-
abling and enabling of advice on a per-object basis. The if(isEnabled(shared))

1 public aspect Shared {
2 declare parents: IShared implements IAccessClassified;

//Introduce variable and methods for run-time disabling/re-enabling of advice
3 private boolean IShared.Enabled = true;
4 private boolean IShared.getEnabled() { return Enabled; }
5 static boolean isEnabled(IShared object) { return object.getEnabled(); }

//Introduce the variable and method for enforcing synchronization
6 private Lock IShared.threadLock = new Lock();
7 private Lock IShared.getSharedLock() { return threadLock; }
8 pointcut methodExecution(IShared ishared): target(ishared) &&

(execution(public * IShared+.*(..))||execution(protected * IShared+.*(..)));
9 Object around(IShared shared) : methodExecution(shared) &&

if(isEnabled(shared)) {
10 Object obj;
11 Kind accessType = shared.getKind(getMethodName(thisJoinPoint));
12 // Get the appropriate lock
13 if (accessType == READ) shared.getSharedLock().getReadLock();
14 else if (accessType == WRITE) shared.getSharedLock().getWriteLock();
15 else shared.getSharedLock().getUpdateLock();
16 obj = proceed(shared);

// Release previously acquired lock
...
20 return obj; } }

Fig. 10. AspectJ Implementation of Shared

pointcut modifier on line 9 checks the field before executing the functionality
provided by Shared.

Lines 6-7 allocate a lock for each Shared object. The pointcut on line 8
makes sure that all public or protected method executions of a Shared object
are intercepted. The around advice on line 9 obligates every thread executing a
method on a Shared object to acquire the appropriate lock before proceeding.
After the operation is executed, the lock is released again.

Tracked Implementation Fig. 11 presents an implementation of the Tracked
aspect. It depends on the AccessClassified aspect to distinguish between read,
write, and update operations, and on the Named aspect to avoid tracking different
copies of the same transactional object (see line 2). InheritableThreadLocal, a
class provided by the standard Java API, is used to associate a thread with a
zone. The Zone class is a simple helper class that maintains three hash tables
to keep track of read, written, and updated objects. The code of the Zone class
is not shown due to space constraints. Tracked zones are requested by executing
the aspect method beginTrackedZone(), and terminated by executing the aspect
method endTrackedZone() (see lines 11–14)4.

The pointcut at line 4 makes sure that all public method calls to tracked
objects are intercepted. The before advice (lines 5–10) only executes if the call
is made from within a tracked zone thanks to the if pointcut modifier. Line 6

4 For space reasons, the code dealing with joining and leaving, as well as nested zones
has been omitted.

1 public aspect Tracked {
2 declare parents: ITracked implements INamed, IAccessClassified;
3 private static InheritableThreadLocal myZone = new InheritableThreadLocal();
4 pointcut methodCall(ITracked track) : target(track) &&

call(public * ITracked+.*(..));
5 before(ITracked track) : methodCall(track) && if(myZone.get()!= null) {
6 Kind type = track.getKind(getMethodName(thisJoinPoint.toShortString()));
7 Zone z = (Zone)myZone.get();
8 String myName = ((ITracked)thisJoinPoint.getTarget()).getName();

//Place the target object in the appropriate category
9 if (type == READ && !z.readObjects().containsKey(myName))

z.addReadObject(thisJoinPoint.getTarget());
10 else if (!z.writeObjects().containsKey(myName))

z.addWriteObject(thisJoinPoint.getTarget());
}

11 public static synchronized void beginTrackedZone(){
12 if (myZone.get() == null) myZone.set(new Zone());

}
13 public static synchronized void endTrackedZone() {
14 myZone.set(null);

}
15 public static Vector getReadObjects() throws NoZoneFoundException{
16 if (myZone.get() == null) throw new NoZoneFoundException("..");
17 return ((Zone)myZone.get()).getReadObjects();

}
18 public static Vector getModifiedObjects() throws NoZoneFoundException{
19 if (myZone.get() == null) throw new NoZoneFoundException("..");
20 return ((Zone)myZone.get()).getModifiedObjects(); } }

Fig. 11. Implementation of Tracked

shows how Tracked calls getKind, a functionality provided by AccessClassified.
Likewise, line 8 calls getName, a functionality provided by Named, to obtain the
object’s identity. If the object has not been associated with the zone yet, the
advice records the access according to its category (lines 9–10). Finally, lines
15–20 implement operations that provide the set of objects read or modified
from within a zone.

LockBased Implementation The LockBased aspect provides support for pes-
simistic lock-based concurrency control with in-place update (Fig. 12). To ac-
complish this, it depends on the following aspects: AccessClassified (to determine
the appropriate transactional lock to acquire for a given transaction), Shared
(to prevent threads within a transaction from concurrently modifying an ob-
ject’s state), AutoRecoverable (to gather undo information in case a transaction
aborts), Tracked (to keep track of the transactional objects that participate in
a transaction) and Persistent (to store the state of the object on stable storage
when a transaction commits). The inter-aspect configuration is done using the
declare parents statement of line 2.

The execution order of these aspects is crucial. An unspecified ordering could
result in bad performance, deadlock or in the worst case even break the ACID

1 public aspect LockBased {
2 declare parents: ILockBased implements

IAccessClassified, IShared, IAutoRecoverable, ITracked, IPersistent;
3 declare precedence: LockBased, AutoRecoverable, Tracked, Versioned, Shared;
4 private TransactionalLock ILockBased.lock = new TransactionalLock();
5 private TransactionalLock ILockBased.getLock() { return lock; }
6 pointcut methodCall(ILockBased lb) : target(lb) &&

call(public * ILockBased+.*(..));
7 before (ILockBased lb) : methodCall(lb) {
8 Transaction t = getCurrentTransaction();
9 if (t != null) {
10 Kind accessType = lb.getKind(getMethodName(thisJoinPoint.toShortString()));
11 lb.getLock().acquire(t, accessType);
12 lb.setDeferred(false);

} }
13 before (Transaction t) : call(public void Transaction.commit()) && target(t) {
14 for (ILockBased lb : Tracked.getModifiedObjects()) {
15 lb.saveState();

} }
16 after (Transaction t) : call(public void Transaction.commit()) && target(t) {
17 for (ILockBased lb : Tracked.getModifiedObjects()) {
18 lb.discardCheckpoint();
19 lb.saveState(); }
20 for (TransactionalLock l : Tracked.getAccessedObjects()) {
21 l.releaseLock(t);

} }
22 after (Transaction t) : call(public void Transaction.abort()) && target(t) {
23 for (ILockBased lb : Tracked.getModifiedObjects()) {
24 lb.restoreCheckpoint(); }
25 for (TransactionalLock l : Tracked.getAccessedObjects()) {
26 l.releaseLock(t);

} } }
Fig. 12. AspectJ Implementation of LockBased

properties. The desired execution order is: LockBased, AutoRecoverable, Tracked,
Versioned, and Shared. LockBased first has to acquire the transactional lock and
set the update strategy in-place before AutoRecoverable executes, the object
is then Tracked, the operation directed to the main version by Versioned, and
mutual exclusion to the state of the object ensured by Shared as shown in Fig. 2.
This ordering is configured using the declare precedence statement in line 3.

Lines 4 and 5 allocate an instance of TransactionalLock for each lockbased ob-
ject. The TransactionalLock class is a helper class that implements transaction-
aware read / write locks. The acquire method suspends the calling thread if
some other transaction is already holding the lock in a conflicting mode.

The pointcut in line 6 makes sure that all public method calls to a LockBased
object are intercepted. The before advice first queries the current transaction in
line 8 (details on transaction life cycle management are out of the scope of this
paper). In line 10, the functionality of AccessClassified is used to classify the
operation that is to be invoked. Line 11 attempts to acquire the transactional

1 public class Account implements ILockBased {
2 private float balance;
3 @Read public float getBalance() { return balance; }
4 @Update public void credit(float amount) {balance += amount; }
}

Fig. 13. A Lockbased Account

lock for the current transaction in the corresponding mode. If successful, line 12
sets the update strategy by using functionality provided by Recoverable (which
is configured to apply to the target object by AutoRecoverable).

Unlike Shared, LockBased follows the two-phase locking protocol, and there-
fore holds on to the transactional locks until the outcome of the transaction is
known. In case of transaction commit, LockBased performs the two-phase com-
mit protocol. The first phase is done by the before advice on lines 13–15. It
obtains all modified objects of the transaction by using the functionality pro-
vided by Tracked, and saves all pre- and post-states to stable storage using the
functionality provided by Persistent. The second phase is handled by the after
advice in lines 16–22. It discards the checkpoints of all modified objects using the
functionality provided by Recoverable, saves their final states to stable storage
using the functionality of Persistent, and then releases the transactional locks of
all accessed objects.

The after advice on lines 22–26 handles transaction abort. It first rolls back all
changes made to modified objects using the functionality provided by Recoverable
and then releases the transactional locks.

Using AspectOptima Line 1 of Fig. 13 shows how a programmer can de-
clare an application class, in this case the class Account, and apply the Lock-
Based aspect to it by simply declaring the class to implement ILockBased. The
getBalance and credit methods are classified as read and update operations
respectively using the marker annotations of AccessClassified in line 3 and 4.

4.4 Encountered AspectJ Limitations and Possible Improvements

We provide a discussion of the encountered AspectJ limitations, possible work-
around solutions, and suggestions for improvements to the AspectJ language
features in this section.

Weak Aspect-to-Class Binding An object in an AspectJ environment could
have three types of methods: those inherited from superclasses and superin-
terfaces, those declared by the class, and those introduced by aspects through
direct or indirect introductions. As explained in section 4.2, our implementation
achieves aspect reusability, separate aspect binding, and inter-aspect configura-
bility by using the abstract introduction idiom [29,30]. Extrinsic static cross-
cutting behaviors are collected in dummy interfaces (via the inter-type member
introduction) and these interfaces are later bound to application classes using the

1 placeholder PCopyable {
2 public void clone() {...}
3 public void replaceState(Object o) {...}
}

4 aspect Copyable {
5 apply PCopyable to Account; }

Fig. 14. Proposed “placeholder” Construct

declare parents construct. For instance, declaring an Account class as implement-
ing ICopyable introduces two additional public operations: replaceState(SrcObj)
and clone() into every Account object.

As described in section 3.2, Copyable interferes with Shared, in the sense
that it should not be possible to copy or clone an object while it is being mod-
ified. Assuming that the previous Account class also implements IShared (such
as, for instance, required by the LockBased aspect), it seems logical to assume
that the call and execution of Account.replaceState(SrcObj) will be captured
by the pointcuts call(public * IShared+.*(..)) and execution(public * IShared+.*(..))
of the Shared aspect, since the method replaceState(SrcObj) is defined for the
Account class. This is not the case; the actual call and execution join points are
call(ICopyable.replaceState(..)) and execution(ICopyable.replaceState(..)),
respectively; i.e, AspectJ associates the call and the execution join points of in-
directly introduced methods with the introduction container not the application
class. As a result, Shared does not intercept calls to replaceState(SrcObj), which
may lead to state inconsistencies if a thread executes a write or update opera-
tion while a different thread tries to copy the state of the object. This deficiency
is not unique to AspectOptima — any two aspects that interfere and work at
the granularity of methods could suffer from the weak aspect-to-class binding
problem.

In our case, a possible work-around is to declare the ICopyable interface as
implementing IShared . In this case, the replaceState and clone method calls
are intercepted by Shared as desired. An unfortunate side effect though is that
Copyable is not individually reusable anymore: all Copyable objects are now also
Shared , even if the application is single-threaded. This proposed work-around can
not solve the problem for circularly interfering aspects.

Language Improvement Suggestion: The weak aspect-to-class binding problem
could be overcome by adding a new class-like construct to AspectJ that we called
a placeholder. A placeholder can define fields and methods, but these members
should not be structurally bound to the placeholder. Its functionality should ex-
clusively be to hold static crosscutting behavior that, at weave time, is bound to
the target class it is applied to. A placeholder should not be instantiable, should
never have a superclass, superinterface or be part of an inheritance hierarchy.

Fig. 14 shows a potential declaration of PCopyable, a placeholder to be used
in the implementation of the Copyable aspect. Lines 1-3 define the placeholder
and the replaceState and clone methods. Line 5 suggests a new construct for
binding the fields and methods of a placeholder to the target class, in this case
Account. As opposed to indirect introduction, this direct introduction associates

the call and execution join points of fields and methods with the target class.
As a result, the use of an interface as an introduction container is no longer
necessary. However, in order to use polymorphic calls, an interface declaration
for Copyable is still needed.

The placeholder concept may sound much like mixins [33], but it is fundamen-
tally different. In mixins, the call and execution of a mixin method is delegated to
the mixin class, not the target class, and hence the weak aspect-to-class binding
problem can occur.

Reflection/Superclass Method Execution Dilemma The enforcement of
the ACID properties of transactional objects occurs at the level of method invo-
cations. To achieve this, the AspectOptima aspects, for instance Shared, must
rigorously intercept every method invocation on a transactional object to per-
form the appropriate pre- and post-actions before allowing the call to proceed.
AspectJ provides two pointcut designators for intercepting the call and execution
of a method: call(MethodPattern) and execution(MethodPattern).

The method call pointcut can intercept non-reflective calls to declared and
inherited methods of an object, but not reflective calls, i.e. calls using the Java re-
flection API. For instance, the pointcut call(public * SavingAccount.*(..)) would
intercept the method call SavingAccount.debit(..) but not debit.invoke
(SavingAccountObject, ..) — a conscious design decision made by the As-
pectJ team not to “delve into the Java reflection library to implement call se-
mantics” [34].

The method execution pointcut is typically used to address this deficiency.
This pointcut can intercept the execution (both reflective and non-reflective) of
declared and “overridden-inherited” methods of an object, but unfortunately not
the execution (both reflective and non-reflective) of “non-overridden-inherited”
methods, because in this case the execution join point occurs in the super class.
For instance, the pointcut execution(public * SavingAccount.*(..)) intercepts
both the reflective and non-reflective execution of SavingAccount.debit(..),
but not SavingAccount.getBalance(), assuming that the getBalance method
is defined in Account and not overridden in the child class SavingAccount.

Composing the call and execution pointcuts with an or operator is not a
feasible solution either, because reflective invocations of getBalance can still
not be intercepted.

One possible work-around is to require the application programmer to man-
ually override all the inherited methods from a super class in the subclass, in
which case the execution pointcut can be used to capture all calls. This solution
is however undesirable: the code reuse benefits of inheritance are diminished,
methods introduced by aspects can not be handled without introducing explicit
dependencies of the base on the aspect, and there is always the danger that an
application programmer forgets to override some of the methods.

Another work-around is to use a pointcut that explicitly names the super
class: target(SavingAccount) && execution(public * Account+.*(..)). This point-
cut intercepts the execution of the methods of an Account object when the

target is SavingAccount. It intercepts both reflective and non-reflective execu-
tions of SavingAccount.getBalance() and SavingAccount.debit(..). It also
correctly excludes the execution of operations on other subclasses of account, e.g.
CheckingAccount. Unfortunately this solution is application specific and cannot
be reused in a generic context. In order to write the pointcut, the exact superclass
and target subclass have to be known.

The only fully generic and reusable solution for the aspect Shared would be
to write: target(IShared) && execution(public * *.*(..)). This pointcut always
works, but can result in a significant performance overhead, since a dynamic
check has to be performed at every public method execution of any class.

Language Improvement Suggestion: We propose the addition of an inheritance-
conscious method execution pointcut to AspectJ : superexecution(MethodPattern).
Given a class with no superclasses, this pointcut behaves exactly as the ex-
ecution(MethodPattern) pointcut (i.e., it intercepts both reflective and non-
reflective execution of declared methods). When used on a class with super-
classes, it automatically overrides all non-overridden inherited methods, in our
case getBalance(), within the body of the target class, in our case SavingAc-
count , with dummy methods that simply call the method in the superclass. It
then applies the standard execution(MethodPattern) pointcut to the class. This
ensures that the execution join points of non-overridden inherited methods oc-
cur in the target subclass, eliminating the reflection/superclass method execution
dilemma problem.

Lack of Support for Explicit Inter-Aspect Configurability The aspects in
AspectOptima exhibit complex aspect dependencies and interferences. AspectJ
has no construct that enables developers to express inter-aspect configurations.
Ideally, an aspect should be able to express the need of functionality offered
by other aspects, or adjust its functionality if interfering aspects are applied to
the same pointcuts. Also, it should be possible to specify incompatible aspect
configurations.

Our AspectJ implementation achieves rudimentary inter-aspect configura-
bility by declaring dummy interfaces for each aspect. Aspects express the de-
pendency on other aspects by having their associated interface implement the
interfaces of the aspects they depend on using the declare parents construct (see,
for example, line 2 of Fig. 12). However, this does not guarantee that the aspects
are applied to the same join points.

Language Improvement Suggestion: We propose the addition of a new declare
dependencies construct to AspectJ, which would allow inter-aspect configura-
bility to be expressed as proposed in Fig. 15. The desired effect of this line of
code is that AccessClassified, Shared, AutoRecoverable, and Tracked should be
applied to all the join points picked out by LockBased. However, general applica-
tions might require more fine-grained control over join points in case of complex
aspect configurations. Ideally, an aspect should be able to selectively decide to

declare dependencies: LockBased requires
AccessClassified, Shared, AutoRecoverable, Tracked;

Fig. 15. Proposed “declare dependencies” Construct

what pointcuts each of the aspects it depends on is to be applied, and on the
order in which the advice are to be executed.

Lack of Support for Per-Object Aspects In systems with many objects,
such as in transactional systems, the ability to selectively apply different aspects
to different objects of the same class is crucial. For instance, one might want to
use pessimistic concurrency control for heavily used Account objects, and use
optimistic concurrency control for less frequently used instances of the Account
class. Unfortunately, AspectJ does not permit a developer to selectively decide
to which instances of a class an aspect should be applied to.

However, the if(BooleanExpression) pointcut of AspectJ can be used to sim-
ulate per-object aspects. An aspect can introduce a field into the target class,
and then test for specific values of that field in the pointcut. For example, an
enumeration field usage could be introduced into the Account class, with possi-
ble values of heavy and normal. The if pointcut could inspect the value of the
usage field to decide if an advice is to be applied to the object or not.

Lack of Support for Run-time Disabling and Enabling of Pointcuts
Aspects are statically deployed in AspectJ ; i.e., the crosscutting behaviors speci-
fied in the aspects become effective in the base applications once they are woven
together and these crosscutting behaviors cannot be altered at run-time. This
limitation is encountered, for instance in multi-version concurrency control (see
section 3.3). After an object’s state has been committed to history, it does not
need to be AutoRecoverable and Shared anymore, since only read transactions
are going to access the object’s state in the future. To maximize system perfor-
mance, it should be possible to disable the AutoRecoverable and Shared aspect
for this object.

As shown in the implementation of the Shared aspect in section 4.3, the
if(BooleanExpression) pointcut of AspectJ can be used to simulate run-time
disabling and enabling of aspects. Unfortunately, this only disables the advice
associated with a join point. This implies that the target-join-point will al-
ways be intercepted but the execution of its associated advice is conditional
on the value of BooleanExpression — resulting in performance loss, since oper-
ations of read-only transactions are still unnecessarily intercepted, and a run-
time check has to be performed on every operation invocation. [35] reports that
the if(BooleanExpression) pointcut (where BooleanExpression is a single static
method call) introduces a 22% performance overhead.

Language Improvement Suggestion: Some AOP languages, e.g. JBossAOP [36],
already support dynamic weaving of aspects as a whole. One could imagine an
even more fine-grained feature that would allow enabling and disabling of point-
cuts. For instance, aspects could define static methods enablePointcut(Pattern)

OO-read OO-update AO-read AO-update
Time (seconds) 382.897 447.284 1871.734 1945.0231

Overhead (factor) 1 1 4.88 4.35

Table 2. Comparing Object-Oriented and Aspect-Oriented Performance

and disablePointcut(Pattern) that would support run-time disabling and re-
enabling of named pointcuts whose name matches Pattern. For instance, the
call Shared.aspectOf(obj).disablePointcut(methodExecution) would dis-
able the method execution interception specified by the Shared aspect for the
object obj - eliminating/reducing the performance overhead.

4.5 Initial Performance Evaluation

We conducted several preliminary performance measurements on our implemen-
tation of AspectOptima in order to determine the performance of the aspect-
oriented framework, and the performance impact that the lack of support of some
of the key language features presented in section 4.1 can have. The measurements
are preliminary in the sense that far more measurements would be needed in
order to accurately determine the performance impact of aspect-oriented frame-
works and language features. In order to compare the performance of differ-
ent aspect-oriented execution environments, thorough benchmarks should be
defined. This is, however, out of the scope of the paper and left for future work.

All our experiments were run on a 3GHz Intel-based laptop with 512MB of
RAM running Windows XP home edition, Eclipse 3.2.0, Java 1.5, and AspectJ
1.5.2. The measurements were obtained using the Eclipse Test and Performance
Tools Platform [37]. All measurements execute operations on a simple bank
account class that encapsulates a balance field and provides the methods int
getBalance() and deposit(int).

Aspect-Oriented Implementation vs. Object-Oriented Implementation
This subsection compares the performance of a purely object-oriented implemen-
tation of lock-based concurrency control with our aspect-oriented implementa-
tion LockBased. To perform the object-oriented measurements, we wrote a wrap-
per class for the bank account class that overrides getBalance and deposit, and
then calls Optima [9,17] (the object-oriented version of our framework) to ex-
ecute the same functionality as LockBased and the ten low-level aspects before
forwarding the call to the actual account.

The performance measurements are given in Table 2. We performed 50,000
getBalance (read) operations, and 50,000 deposit (update) operations. The
overall slowdown of the aspect-oriented implementation is around 1490 seconds
for both read and update operations, which represents 30 ms per operation.

The fact that the aspect-oriented implementation is slower is not surprising.
Each of the low-level aspects is individually reusable and does not know about
the specific context in which it is used. This independence makes it impossible to
share runtime information among aspects. For instance, LockBased has to query

not shared shared & not enabled shared (no if) shared & enabled
Time (seconds) 0.586430 8.755212 54.023821 63.328594
Overhead factor 1 15 92 108

Table 3. Performance Overhead due to Lack of Dynamic Aspects

the access kind of the method to be called from AccessClassified. But so does
AutoRecoverable, Tracked, and Shared (see Fig. 2). The object-oriented imple-
mentation however can optimize: it calls AccessClassified only once, and then
passes the access kind as a parameter to the different components implementing
2-phase locking, recovery, and mutual exclusion.

This is of course not a problem of aspect-orientation as such, but rather a
problem of separation of concerns in general. Since each aspect should be individ-
ually reusable, it can not depend on other aspects to classify the operation. It is
foreseeable, however, that this slowdown in the future will become less significant
thanks to advances in compiler and weaving technology. For instance, LockBased,
AutoRecoverable, Tracked and Shared all apply to the same joinpoint. An ad-
vanced weaver, such as found in the abc [32] compiler or the Steamloom environ-
ment [38], might be able to detect this situation and perform context-dependent
optimizations. To make this possible, the compiler would have to detect that the
result returned by getKind(String methodName) of AccessClassified is constant
for a given method name. It always returns the same meta-information.

Performance Impact of Simulating Per-Object Aspects The need for
per-object aspects and dynamic aspects, i.e. runtime disabling and re-enabling
of aspects, is motivated by the multi-version concurrency control example. Once
an object’s state is committed, it is inserted into the history, and is subsequently
only ever accessed by read-only transactions. Hence, the functionality provided
by the Shared aspect is not needed anymore, since no transaction will ever modify
that particular version of the object’s state in the future. In AspectJ it is not
possible to disable the pointcut defined in the Shared aspect at runtime. An
if(BooleanExpression) pointcut modifier has to be used to simulate the disabling
as shown in lines 3-5 and 9 of Fig. 10. Since the AspectJ rules forbid the use
of non-static function calls within the boolean expression, an additional static
version of the getEnabled() method that simply forwards the call to the target
object had to be created.

To measure the performance overhead incurred, we performed three experi-
ments, in which the read-only operation getBalance was called 1,000,000 times.
The results of the experiment are presented in Table 3.

The first column shows the time spent inside getBalance for a standard bank
account object. The third column shows the time spent inside getBalance when
Shared has been applied to the bank account object (but in this case without an
if pointcut modifier in the pointcut). This includes the call to AccessClassified
and the acquisition of the read lock. Obviously, the time spent in the method
is considerably bigger – in our case by a factor of 92. The overhead of the if
pointcut modifier is apparent in the second and the last column. They show

targeted read targeted update generic read generic update
Time (seconds) 40.210723 29.900585 65.503984 52.767678

Overhead (factor) 1 1 1.63 1.76

Table 4. Comparing Application-Specific and Reusable Pointcuts

the time it takes to check if the shared aspect is enabled for a particular bank
account object. Our experiments show a slowdown of 8.2 seconds (a factor of
15!) when shared is disabled, and a slowdown of 9.3 seconds when it is enabled.

An aspect-oriented environment that supports dynamic aspects can there-
fore achieve significantly better performance. Of course, the actual activation
/ deactivation of aspects at runtime might also be costly. However, very often
activation and deactivation are rare events, and their overhead can be safely
ignored. In the case of multi-version concurrency control, the Shared aspect is
deactivated once and for all when the object’s state is inserted into the history
of states.

Performance Impact of Writing Reusable Pointcuts The last experi-
ence we conducted aimed at evaluating the performance loss incurred in AspectJ
due to having to work around the reflection/super class execution dilemma. In
section 4.4 we described that with a targeted call pointcut we can not handle
reflective calls, whereas with a targeted execution pointcut we can not handle
executions of methods defined in the super class. The only way to achieve full
functionality and reusability is to write a generic pointcut that intercepts all
public method executions occurring in the application and dynamically check
for the specific target at runtime.

To evaluate the performance loss we again ran 1,000,000 getBalance and
deposit operations on a shared bank account object, once using the targeted,
application-specific execution pointcut target(SavingAccount) && execution(public
* Account+.*(..), and once with the generic, reusable execution pointcut tar-
get(IShared) && execution(public * *.*(..)). The results are presented in Table 4.

The table shows that read operations are slower than update operations. This
results from the fact that acquiring a read lock takes in general more time than
acquiring a write lock.

The results also show that the slowdown resulting from a generic pointcut is
not too significant: less than a factor of 2. This result must however be interpreted
carefully. The performance loss measured here is the loss that is incurred due to
the generic pointcut when calling a Shared object. But the generic pointcut will
slow down every public method execution in the system, regardless of whether
the object is shared or not, and therefore results in huge runtime overhead for
an application with many calls to methods of non-shared objects.

5 Related Work

The ideas and techniques investigated in this paper intersect with a broad spec-
trum of research projects on transactional systems and aspects, reusable aspect-

oriented frameworks, and aspect dependencies and interactions. We present the
most relevant related work in this section.

5.1 Aspects Implementing General Application Concerns

Aspects for Concurrent Programming Cunha et al. [3] investigated tech-
niques for implementing reusable aspects for high-level concurrency mechanisms
in AspectJ. The authors illustrated how abstract pointcut interfaces and an-
notations can be used to implement one-way calls, synchronization barriers,
reader/writer locks, and schedulers. The performance overhead and reusabil-
ity of an object-oriented implementation of these mechanisms was compared to
their aspect-oriented implementation. They concluded that the AspectJ imple-
mentation is more reusable and pluggable, but incurs a noticeable performance
overhead. However, AspectJ was found to have a limitation in acquiring local join
point information in concrete aspects: when a superaspect defines an abstract
pointcut, the subaspects can not change the pointcut’s signature.

Similar to our work, Cunha et al. used annotations to denote methods that
require special processing at run-time. However, their work did not address the
issue of aspect dependencies and interactions which may occur when these con-
currency mechanisms are applied to a common method. In addition, their tech-
nique used in supporting aspect reusability is different and requires additional
code. In their case, developers must provide concrete pointcuts and advice for
each of the abstract pointcuts, which can be error-prone if done incorrectly.
Conversely, the declare parents construct used by our AspectOptima implemen-
tation to bind the aspects to application classes is safe: the correct pointcuts are
hardcoded in the aspects.

Persistence Aspects Rashid et al. [5,39] have worked extensively on tech-
niques which apply AOP concepts to database systems. In [5], the authors ex-
plored three issues in the context of AOP and data persistence: the possibility
of using AOP techniques in aspectizing persistence, the reusability of persis-
tence aspects, and whether persistence aspects could be developed independently
of an application. Using a relational database application as an example, they
demonstrated incrementally how reusable aspects for database connections, data
storage and updates, data retrieval, and data deletion can be implemented in
AspectJ. It was concluded that persistence can indeed be aspectized in a reusable
way, but can only be partially developed independently of an application since
operations such as data retrieval and deletion must be explicitly considered.

Rashid et al. achieved reusability by requiring all classes whose instances
are to be made persistent extend a common base class. Since Java does not
support multiple inheritance, classes that already extend other classes cannot
be made persistent without some degree of code restructuring. In contrast, reuse
in AspectOptima is achieved through marker interfaces — aspects are applied to
classes that implement their associated interfaces — eliminating concerns about
multiple inheritance support. In addition, our Persistence aspect is built upon
reusable aspects that can be useful in non-transactional contexts too, whereas
their implementation uses database specific code that cannot be reused in other

contexts. On the other hand, our Persistence aspect currently does not support
databases.

Aspects for Distributed Applications In [40], the authors proposed
JAC, an AOP-based middleware for building distributed Java applications. JAC
separates aspect binding and crosscutting code into two different modules, re-
spectively aspect components and dynamic wrappers, facilitating aspect reuse.
Support for run-time aspect deployment is achieved through load-time transfor-
mations, whereas our aspects must all be weaved in at compile-time and then
selectively enabled or disabled. To achieve aspect distribution, JAC offers a con-
tainer mechanism that hosts both application objects and aspect component
instances and makes them remotely accessible using either CORBA or RMI.

Similar to our transaction aspect, developers can reuse the aspects that
come with the JAC framework (e.g., tracing, persistence, authentication, session,
load-balancing, to name a few) easily within their application. Configuration is
achieved through a separate configuration file. JAC differs from AspectOptima
because the functionality that JAC provides is not achieved by composing indi-
vidually reusable base aspects, and hence aspect dependencies and interferences
also are not addressed in a general and reusable way. The JAC documentation
does not explicitly mention aspect dependencies and interferences, but it is safe
to assume that they are handled internally for every possible aspect combination.

5.2 Aspects and Transactions

The work of Fabry et al. [41,42] applies AOP concepts to advanced transaction
models, e.g. nested and long running transactions. The authors argued that the
high complexity and inadequate separation of concerns in these models impedes
their use by application programmers. In order to encourage the use of these
models, they proposed a domain-specific aspect language called KALA for mod-
ularizing the concepts of advanced transaction models into aspects. KALA is
based on the ACTA formalism [43].

The main goal of our work is to define an aspect framework with many
individually reusable aspects that can be combined in several ways according
to the application developers needs. AspectOptima is not meant to be used
in a high-performance transactional application, but rather serves as a real-
world aspect framework for experimenting with intricate aspect dependencies
and interactions. While KALA aims at synthesizing new transaction models
and at providing an elegant interface for defining transaction boundaries to an
application programmer, our framework simply aims at implementing several
concurrency control and recovery strategies by combining individually reusable
aspects in different ways.

5.3 Reusable Aspect Design Frameworks

Our ten aspects can be combined in different ways to implement different con-
currency control and recovery strategies. A few design frameworks promise this
kind of customizable composability, and we present some of them below. This

version of our design didn’t follow any particular methodology, so it would be
interesting future work to compare it with similar designs obtained through some
of the following frameworks.

FODA Feature-Oriented Domain Analysis (FODA) [44] is a domain anal-
ysis method for product line development, i.e. a family of systems in a domain,
rather than a single system. Domain products, representing the common func-
tionality and architecture of applications in a domain, are produced from domain
analysis. Specific applications in the domain may be developed as refinements of
the domain products.

As part of the process, FODA prescribes the creation of a feature model.
Features are defined as attributes, properties, functions, capabilities or services
of a system that directly affect end-users. The feature interaction model allows
the developer to specify dependencies among features, such as specialization,
optional, requires, mutually exclusive with. When building a concrete application,
the developer has to specify which features the final application should contain.

FODA is a domain analysis method, and hence very different from aspect
frameworks such as AspectOptima. An interesting experiment would be to ap-
ply FODA to the transaction domain and compare the user-oriented features
identified in the FODA feature model with the AspectOptima aspects.

Framed Aspects In [45] the authors propose framed aspects, an approach
that uses AOP to modularize crosscutting and tangled concerns and frame tech-
nology [46] to allow aspect parameterization, configuration, and customization.
In framed aspects, the identification of features (here called feature aspects), and
detection of dependencies and interferences is performed following the high-level
feature interaction approach promoted by FODA. Once this is done, the features
are modularized within framed aspects, together with their dependencies.

Framed aspects are made up of three distinct modules: the framed aspect
code (normal and parameterized aspect code), composition rules (aspect de-
pendencies, acceptable and incompatible aspect configurations), and specifica-
tions (user-specific customization). These modules are composed to generate
customized aspect code using a frame processor. Framed aspects achieve sep-
arate aspect bindings and aspect dependencies through parameterization and
composition rules respectively. Composition rules can also be used for specifying
acceptable and incompatible aspect configurations. The above mentioned con-
structs enable framed aspects to be reused in contexts other than that for which
they were implemented.

It would be very interesting to attempt an implementation of AspectOptima
using framed aspects in order to investigate how well this approach supports the
language features presented in section 4.1.

Ahead [47] describes a generic mechanism to generate a group of artifacts
(code, documentation, makefiles, uml diagrams...) which, together, describe a
program implementing a given subset of the available features. To do so, they
first choose a labelled-tree representation for each artifact, and they interpret the
resulting structure as a hierarchy of objects containing other objects. They then
label the containment relationships according to the features they implement,

extracting similarly purposed relationships into independently injectable mixins,
and grouping the mixins into “layers” representing the features.

This mixin-based strategy is strikingly similar to CaesarJ’s collaboration
composition mechanism [28], and quite different from AspectJ’s strategy. At-
tempting an implementation with this kind of language should be especially
insightful.

6 Conclusions

Designing and implementing the ACID properties of transactional objects is a
simple, but non-trivial, real-world example to which aspect-oriented techniques
can be applied. The first part of the paper presents AspectOptima, a language
independent, aspect-oriented framework that ensures the ACID properties for
transactional objects. The framework consists of ten base aspects at the lowest
level, each one providing a well-defined reusable functionality. The base aspects
are simple, yet have complex dependencies among each other. We demonstrated
how the base aspects can be configured and composed in different ways to im-
plement different concurrency control and recovery strategies. This composition
is delicate: some aspects conflict with each other or require a specific invocation
ordering, others have to be reconfigured dynamically at run-time.

All of the above, and the fact that AspectOptima has not been invented to
promote a particular aspect-oriented system, makes it an ideal challenge case
study for the aspect-oriented community. In particular, we believe that it can be
used to evaluate:

• Aspect-Oriented Software Development Processes: We performed
our decomposition into aspects based on our previous implementation
experience. How does an AOSD process perform when applied to this
case study? Is the resulting decomposition equally simple, modular, and
reusable? Can the process identify aspect dependencies and conflicts?

• Aspect-Oriented Modeling Notations:
Can an AOM notation capture the complex structural and behavioral
dependencies of the aspects in this case study? Are the resulting models
easy to understand? Are the models reusable? Can aspect dependencies
and conflicts be expressed?

• Aspect-Oriented Validation and Verification:
Can AO formal methods and AO testing techniques be used to individ-
ually validate and verify each aspect in a stand-alone way? Can these
methods detect conflicts between aspects?

• Aspect-Oriented Programming Implementations:
How do different AOP implementations compare with respect to per-
formance and memory footprint? How do they compare to standard
OO implementations? Is run-time weaving to implement dynamic AOP
faster than static weaving with run-time checks?

• Aspect-Oriented Language Features:
What are the features that an AO programming language must provide

in order to implement this case study? What features can promote good
software engineering properties such as encapsulation, modularization,
testability, maintainability, and reusability? What features are required
to support aspect dependencies and resolution of conflicts in a reusable
way?

In order to give an idea on how AspectOptima can be used to evaluate the
expressiveness of aspect-oriented languages, we presented in the second part of
this paper an implementation of AspectOptima in AspectJ. We identified six
key language features that an aspect-oriented language must provide in order
to implement AspectOptima in a satisfactory way: separate aspect binding,
inter-aspect configurability, inter-aspect ordering, per-object aspects, dynamic
aspects, and per-thread aspects. We then showed parts of our implementation
to demonstrate that AspectJ provides sufficient, but certainly not ideal or el-
egant support for implementing reusable aspect frameworks and dealing with
mutually dependent and interfering aspects. We discussed the encountered lan-
guage limitations, suggested possible language improvements where appropriate
and presented some preliminary measurements that highlight the performance
impact of certain language features.

7 Future Work and Acknowledgments

We have demonstrated how AspectOptima can be used to evaluate the lan-
guage features of AspectJ, and intend to do the same for other aspect-oriented
programming languages in the immediate future. We intend to define different
benchmarks that can be used to compare the performance of these AOP envi-
ronments, and run these benchmarks on our implementations to obtain reference
measurements. We also plan to run the benchmarks on the object-oriented im-
plementation of Optima[9,17], and compare the results.

We are also working on extending AspectOptima. First of all, concurrency
control and recovery can be further enhanced when more information about the
semantics of operations is available. We intend to define a SemanticClassified
aspect that defines forward and backward commutativity for all operations of
an object, and maps every operation to a corresponding inverse operation. Such
semantic information opens the door to semantic-based concurrency control [11]
and logical recovery based on intention lists.

The work described in this paper has focused on the identification and im-
plementation of aspects that crosscut objects. However, the Versioned, Tracked,
and AutoRecoverable aspects share a common need for a well-defined region of
computation (zone/view) that threads can be associated with, and during which
certain actions (such as object accesses) are to be monitored. This is a cross-
cutting concern of threads of computation, rather than a crosscutting concern
of objects. We have already started to extend AspectOptima beyond object-
centered aspects, implementing transaction life-cycle management with aspects.
Initial results can be found in [48].

This research has been partially funded by the Natural Sciences and Engi-
neering Research Council of Canada (NSERC). The authors would also like to
thank Jean-Sebastien Légaré and Isaac Yuen for their work on the implementa-
tion of the AspectOptima prototype, and the anonymous reviewers.

References

1. Elrad, T., Aksit, M., Kiczales, G., Lieberherr, K., Ossher, H.: Discussing Aspects
of AOP. Communications of the ACM 44 (2001) 33–38

2. Soares, S., Laureano, E., Borba, P.: Implementing Distribution and Persistence
Aspects with AspectJ. In: Proceedings of the 17th ACM Conference on Object-
Oriented Programming, Systems, Languages, and Applications, ACM Press (2002)
174–190

3. Cunha, C.A., Sobral, J.L., Monteiro, M.P.: Reusable Aspect-Oriented Implemen-
tations of Concurrency Control Patterns and Mechanisms. In: Proceedings of the
5th International Conference on Aspect-Oriented Software Development - AOSD
2006, ACM Press (2006) 134 – 145

4. Kienzle, J., Guerraoui, R.: AOP - Does It Make Sense? The Case of Concurrency
and Failures. In: 16th European Conference on Object–Oriented Programming
(ECOOP’2002). Number 2374 in Lecture Notes in Computer Science, Malaga,
Spain, Springer Verlag (2002) 37 – 61

5. Rashid, A., Chitchyan, R.: Persistence as an Aspect. In: Proceedings of the 2nd
International Conference on Aspect-Oriented Software Development - AOSD’2003,
ACM Press (2003) 120 – 129

6. Kienzle, J., Gélineau, S.: AO Challenge: Implementing the ACID Properties for
Transactional Objects. In: Proceedings of the 5th International Conference on
Aspect-Oriented Software Development - AOSD 2006, March 20 - 24, 2006, ACM
Press (2006) 202 – 213

7. Gray, J., Reuter, A.: Transaction Processing: Concepts and Techniques. Morgan
Kaufmann Publishers, San Mateo, California (1993)

8. Kienzle, J., Romanovsky, A., Strohmeier, A.: Open Multithreaded Transactions:
Keeping Threads and Exceptions under Control. In: Proceedings of the 6th In-
ternational Worshop on Object-Oriented Real-Time Dependable Systems, Roma,
Italy, 2001, IEEE Computer Society Press (2001) 209 – 217

9. Kienzle, J.: Open Multithreaded Transactions — A Transaction Model for Con-
current Object-Oriented Programming. Kluwer Academic Publishers (2003)

10. Papadimitriou, C.: The Serializability of Concurrent Database Updates. Journal
of the ACM 26 (1979) 631 – 653

11. Ramamritham, K., Chrysanthis, P.K.: Advances in concurrency control and trans-
action processing, Los Alamitos, California (1997)

12. Kung, H.T., Robinson, J.T.: On Optimistic Methods for Concurrency Control.
ACM Transactions on Database Systems 6 (1981) 213 – 226

13. Bernstein, P.A., Goodman, N.: Concurrency Control in Distributed Database Sys-
tems. ACM Computing Surveys 13 (1981) 185 – 221

14. Papadimitriou, C.H., Kanellakis, P.C.: On Concurrency Control by Multiple Ver-
sions. ACM Transactions on Database Systems 9 (1984) 89 – 99

15. Agrawal, D., Sengupta, S.: Modular Synchronization in Multiversion Databases:
Version Control and Concurrency Control. In: Proceedings of the 1989 ACM SIG-

MOD International Conference on the Management of Data, Portland, Oregon,
New York, USA, ACM Press (1989) 408 – 417

16. Lampson, B., Sturgis, H.: Crash Recovery in a Distributed Data Storage System.
Technical report, XEROX Research Center, Palo Alto (1979)

17. Kienzle, J., Jiménez-Peris, R., Romanovsky, A., Patiño-Martinez, M.: Transaction
Support for Ada. In: Reliable Software Technologies - Ada-Europe 2001, Leuven,
Belgium. Number 2043 in Lecture Notes in Computer Science, Springer Verlag
(2001) 290 – 304

18. Kienzle, J., Romanovsky, A.: A framework based on design patterns for providing
persistence in object-oriented programming languages. In IEEE Proceedings of
Software Engineering 149 (2002) 77 – 85

19. Riehle, D., Siberski, W., Bäumer, D., Megert, D., Züllighoven, H.: Serializer. In:
Pattern Languages of Program Design 3, Addison-Wesley (1998) 293–312

20. Krasner, G., Pope, S.: A cookbook for using the model-view-controller user inter-
face paradigm in smalltalk-80. Journal of Object-Oriented Programming 1 (1988)
26 – 49

21. Kienzle, J., Strohmeier, A.: Shared Recoverable Objects. In Harbour, M.G., de la
Puente, J.A., eds.: Reliable Software Technologies - Ada-Europe 99, Santander,
Spain. Volume 1622 of Lecture Notes in Computer Science. (1999) 397 – 411

22. Atkinson, M.P., Bailey, P.J., Chisholm, K.J., Cockshott, W.P., Morrison, R.: An
Approach to Persistent Programming. Computer Journal 26 (1983) 360 – 365

23. Eswaran, K.P., Gray, J., Lorie, R.A., Traiger, I.L.: The Notion of Consistency and
Predicate Locks in a Database System. Communications of the ACM 19 (1976)
624 – 633

24. Kiczales, G., Hilsdale, E., Hugunin, J., Kersen, M., Palm, J., Griswold, W.G.: An
Overview of AspectJ. In: 15th European Conference on Object–Oriented Program-
ming (ECOOP’2001), Budapest, Hungary (2001) 327 – 357

25. : Workshop on Software Engineering Properties of Languages and Aspect Tech-
nologies – SPLAT (2003 - 2007)

26. : Workshop on Foundations of Aspect-Oriented Languages – FOAL (2002 - 2007)
27. Gosling, J., Joy, B., Steele, G.L.: The Java Language Specification. The Java

Series. Addison Wesley, Reading, MA, USA (1996)
28. Aracic, I., Gasiunas, V., Mezini, M., Ostermann, K.: An Overview of CaesarJ.

Transactions on Aspect-Oriented Software Development 3880 (2006) 135–173
29. Hanenberg, S., Costanza, P.: Connecting Aspects in AspectJ: Strategies vs. Pat-

terns. In: First AOSD Workshop on Aspects, Components, and Patterns for In-
frastructure Software. (2002)

30. Hanenberg, S., Unland, R.: Parametric Introductions. In: Proceedings of the 2nd
International Conference on Aspect-Oriented Software Development - AOSD’2003,
ACM Press (2003) 80 – 89

31. Duala-Ekoko, E.: Evaluating the Expressivity of AspectJ in Implementing a
Reusable Framework for the ACID Properties of Transactional Objects - Master
Thesis, School of Computer Science, McGill University (2006)

32. Avgustinov, P., Christensen, A.S., Hendren, L., Kuzins, S., Lhoták, J., Lhoták,
O., de Moor, O., Sereni, D., Sittampalam, G., Tibble, J.: abc: an Extensible
AspectJ Compiler. In: AOSD ’05: Proceedings of the 4th international conference
on Aspect-oriented software development, New York, NY, USA, ACM Press (2005)
87–98

33. Schmidmeier, A., Hanenberg, S., Unland, R.: Known Concepts Implemented in
AspectJ. In: 3rd Workshop on Aspect-Oriented Software Development (AOSD-GI)

of the SIG Object-Oriented Software Development, German Informatics Society.
(2003)

34. Xerox Corporation: Frequently Asked Questions about AspectJ. Available at
http://www.eclipse.org/aspectj/doc/released/faq.html (2006)

35. Hilsdale, E., Hugunin, J.: Advice Weaving in AspectJ. In: Proceedings of the 3rd
International Conference on Aspect-Oriented Software Development - AOSD’2004,
ACM Press (2004) 26 – 35

36. Burke, B., Chau, A., Fleury, M., Brock, A., Godwin, A., Gliebe, H.: JBoss Aspect-
Oriented Programming (2004)

37. The Eclipse Project: Eclipse Test and Performance Tools Platform. Available at
http://www.eclipse.org/tptp/ (2007)

38. Bockisch, C., Arnold, M., Dinkelaker, T., Mezini, M.: Adapting Virtual Machine
Techniques for Seamless Aspect Support. In ACM, ed.: ACM Sigplan International
Conference on Object-oriented Programming, Systems, Languages, and Applica-
tions (OOPSLA). (2006) 109–124

39. Rashid, A.: Aspect-Oriented Database Systems. Springer-Verlag (2004)
40. Pawlak, R., Seinturier, L., Duchien, L., Florin, G., Legond-Aubry, F., Martelli, L.:

JAC: an Aspect-Based Distributed Dynamic Framework. Software Practice and
Experience 34 (2004) 1119–1148

41. Fabry, J., Cleenewerck, T.: Aspect-Oriented Domain Specific Languages for Ad-
vanced Transaction Management. In: International Conference on Enterprise In-
formation Systems 2005 (ICEIS 2005) proceedings, Springer-Verlag (2005) 428–432

42. Fabry, J., D’Hondt, T.: KALA: Kernel Aspect Language for Advanced Transac-
tions. In: SAC ’06: Proceedings of the 2006 ACM Symposium on Applied Com-
puting, ACM Press (2006) 1615–1620

43. Chrysanthis, P.K., Ramamritham, K.: Synthesis of Extended Transaction Models
using ACTA. ACM Transactions on Database Systems 19 (1994) 450 – 491

44. Kang, K., Cohen, S., Hess, J., Novak, W., Peterson, S.: Feature-Oriented Do-
main Analysis (FODA) Feasibility Study. Technical Report CMU/SEI-90-TR-21,
Software Engineering Institute, Carnegie Mellon University (1990)

45. Loughran, N., Rashid, A.: Framed Aspects : Supporting Variability and Config-
urability for AOP. In: In International Conference on Software Reuse (ICSR-8),
Springer Berlin/Heidelberg (2004) 127–140

46. Bassett, P.: Framing Software Reuse: Lessons from the Real World. Prentice-Hall,
Inc., Upper Saddle River, NJ, USA (1997)

47. Batory, D., Sarvela, J.N., Rauschmayer, A.: Scaling Step-Wise Refinement. IEEE
Transactions on Software Engineering 30 (2004) 355–371

48. Bölükbaşi, G.: Aspectual Decomposition of Transactions. Master’s thesis, School
of Computer Science, McGill University, Montreal, Canada (2007)

