COMP-533 Model-Driven Software Development
Assignment 3
Video Slot Machine
GUT Design with Reusable Aspect Models

(10% of final grade)

November 27, 2013

Preparation

To solve this assignment you need to install TouchRAM. You can download the stand-alone application, which is dis-
tributed in form of a . jar file, from here: http://www.cs.mcgill.ca/~joerg/SEL/TouchRAM.html. The application
should run on any machine that runs Java and has a relatively decent graphics card!. If graphic performance is low,
try switching to windowed mode, changing the resolution or adjusting the OpenGL settings in the Settings.txt
file. The QuickReference guide gives a very short overview of how to use TouchRAM.

You should also download the files SlotMachine.ram and SlotMachineGUILram, two RAM models that you
are going to extend for this assignment. You must place these two files in the models folder in the TouchRAM
application folder.

Finally, you can also download several pdf files with sample RAM models from the course webpage. The
models include the design pattern RAM models (such as Observer and Singleton), Utility RAM models (such as
Map and Named), the entire Workflow middleware, as well as the NetworkCommand RAM model and dependent
Socket Communication.

We would be very happy to receive constructive feedback on TouchRAM, i.e., how we could improve the tool
in the future. If you are interested in working on the tool as part of a undergraduate or masters project / thesis,
come and talk to me. In case you have trouble using the tool, please send Omar (or me) an email.

Problem Statement, Use Cases, and Requirements Specification

Same as for the final.

8 Partial Design

Fig. 1 shows a Reusable Aspect Model (RAM) that describes the design structure of the EGM that encodes the
basic state of the slot machine?. The message view systemStartup describes the behaviour that is triggered from
inside the constructor of the SlotMachine class to create and initialize all important objects as follows:

e First, the operation opens the file “icons.info”, and reads from it a set of icon names (in form of Strings), each
representing a distinct icon (we assume that there are no duplicate icon names in the file). It then instantiates
for each icon name a corresponding Icon object and registers it with the IconManager.

11t seems like on the Macintosh, Java 1.7 is not supported. Make sure you run it under Java 1.6.
2The file SlotMachine.ram that is part of the handout for assignment 3 contains the same structural elements as the ones shown in
Fig. 1.

aspect SlotMachine depends on Map, Singleton, Named

structural view

SlotMachine Reel | {ordered} 22 Icon
- int currentCredits - int position bm - String name
- Mode currentMode fordered) 5|~ Reel create() ~ Icon create(String name)
+ SlotMachine getSlotMachine() |@ + int getPosition()
- SlotMachine create() myReels| void setPosition()
+ int getCurrentCredits() ~ void setlconAt(int pos, Icon i)
+ void setCurrentCredits() ~ |con getlconAt(int pos)
+ Mode getCurrentMode() .
- void setReel(int number, Reel r) <<enu|\r/1|1erat|on>> IconManager
~ Reel getReel(int number) ode
+void systemStartup() play ~ IconManager getlconManager()
handpay - lconManager create()
outOfService ~ Icon getlcon(String iconName)
~ void setlcon(String iconName, Icon i)
Instantiations:
Map: IData = IconManager; IKey — String; IValue — Icon; getValue— geticon; add — seticon
Named: INamed — Icon;
Singleton: ISingleton — IconManager; getinstance — getlconManager;
Singleton: ISingleton — SlotMachine; getinstance — getSlotMachine;
Implementation:
ObjectinputStream java.io.ObjectlnputStream
FilelnputStream java.io.FileInputStream
message view create

create()

[new: SlotMachine |
: systemStartup()
I

message view systemStartup |
: SlotMachine <<metaclass>> || im: lconManager
systemStartup() IconManager
— T
1im = getlconManager@
—p

loadlcons("icon.info") : iconFile := new ObjectinputStream(new

FileInputStream("icon.info")) iconFile:

»

" | ObjectinputStream
T

»
T >

1
: numberOflcons := readObject()

»!
!

]
loop [i = 1 .. numberOficons] [

| iconName := readObiject()

»
| o

r
: newlcon := create(iconName)

I

I

I

I

I

I

I

I

I

I

I

I

I

I

' h »| newlcon: Icon
| addlcon(iconName,newlcon)
I I)
I I

I

I

I

I

I

I

L

I

I

: close()

\J

reelConfigFile := new ObjectinputStream(new :
FileInputStream("reelconfig.info")) g reelConfigFile:
" | ObjectinputStream

loop[r=1 5] {

| I := create()

|
loop [rpos =1 .. 22] [

: iName := readObject()

Y

1
1icon := getlcon(iName)

\4

:setlconAt(rpos, icon)
1

»
'

I close()

\J

1 1
message view getCurrentCredits is Getter<currentCredits>

message view setCurrentCredits is Setter<currentCredits>

message view getCurrentMode is Getter<currentMode>

message view getPosition is Getter<position>

message view setPosition is Setter<position>

Figure 1: The SlotMachine Reusable Aspect Model
2

e Then, the operation opens the file “reelsConfig.info”, and reads from it 5 times 22 icon names. Within each of
the 5 iterations, a reel is instantiated and the 22 reel positions are initialized with the icons that corresponds
to the read icon names.?

9 GUI Design

Assignment Summary

Your task is to design a GUI for the EGM that can display the 5 reels at their current position (i.e., for each reel, the
icon associated with the current position of the reel, together with the two previous icons and the two following icons).
Whenever the reel position changes, the GUI should immediately update accordingly. The additional structure and
behaviour needed for the GUI must be designed in a separate RAM model called SlotMachineGUI that extends
the SlotMachine RAM aspect shown in Fig. 1. All your design must be done within the SlotMachineGUI model.
You are not allowed to modify the SlotMachine model.

Tools to Use / Documents to Handin

You are to use TouchRAM to design the structural extensions in the SlotMachineGUI model. Since TouchRAM
unfortunately does not support editing of message views yet, you have to use some other UML or drawing tool to
create the message views for all operations that you define. Only if an operation simply accesses attributes of the
object (for example, like getters and setters do), or if the behaviour of the operation is provided by some other
aspect’s message views, then you do not have to define your own message view for that operation.

To complete the assignment you must hand in your modified copy of the SlotMachineGUI.ram file, plus a pdf
/ paper copy depicting the message views for all operations that you added to the SlotMachineGUI RAM model.

Assignment Details
Some design decisions have already been made for you.

e The pictures that are to be used to graphically represent the icons are stored in files using the PNG for-
mat with the names iconname.png, where iconname corresponds to the names stored in the icons.info and
reelConfig.info files used during system startup.

e A specific 3rd party GUI framework was chosen to handle the drawing of pictures on the display of the
slot machine. In particular, two classes, Canvas and Picture, are provided to you by the framework*. The
Canvas class is an abstraction of a display or drawing surface. The Picture class provides two operations: a
constructor that can initialize a picture by reading its content from a file in PNG format, and a draw operation
that displays the picture at a specified z and y position on a given canvas object.

To simplify your task, I outline the different design steps needed to accomplish the GUI design in the following
subsections.

9.1 Initializing the Graphical Representation of Icons

The SlotMachineGUI model already contains the two implementation classes provided by the GUI framework,
Canvas and Picture. It extends the SlotMachine RAM model shown in Fig. 1. You can explore both models by
opening SlotMachineGUT in TouchRAM. Double-clicking on the SlotMachine dependency will open the SlotMachine
model®.

You must now use TouchRAM to extend the structural view of the SlotMachineGUI model to associate a picture
with each icon of the slot machine. Then, you should specify message views in SlotMachineGUI that affect the
system startup behaviour to initialize the pictures. As a reminder, augmenting a message view m with additional
behaviour is done in RAM as follows:

3Note: the complete EGM would also have to instantiate and initialize the paytable, the log and the cumulative meters during
system startup, but this is out of the scope of this assignment.

4This means that you are not allowed to modify the Canvas or Picture classes

5 Note: Since our tool currently does not support enumeration types, the Mode enumeration type in the TouchRAM model is simply
encoded as a String.

message view m affectedBy additionalBehaviour
message view additionalBehaviour | |
Pointcut Advice
caller: Caller [target: X | | [caller: Caller | [target: X | | myY:Y |
. m(.) : : m(..) : :
1 = | L | |
I . |] " I
. . .
| | |
Rl ! | l TN :
- . "
| < -——————-——=—---- 1 1

Figure 2: RAM Aspect Message Views

9.2 Creating the Reel Views

We are going to use a simplified version of the Model- View-Controller (MVC) design pattern to integrate the GUI
with the slot machine base classes. In this step you must create the ReelView class that is capable of displaying the
state of a reel. To accomplish this step, you need to use TouchRAM to add a ReelView class to the SlotMachineGUI
RAM model. It should have a current x and y position, and a canvas on which it is displayed. Then, design the draw
operation that takes as a parameter a reel and displays the 5 icons that correspond to the current reel position on
the canvas at the position (x,y-2*iconHeight), (x,y-iconHeight), (x,y), (x,y+iconHeight) and (x,y+2*iconHeight).

9.3 Initializing the Reel Views

To initialize the GUI, you are to create a SlotMachineGUI class in the SlotMachineGUI RAM model that provides
an initializeGUI operation that creates a canvas of width display Width and height displayHeight. Then it should
create a reel view instance for each reel, and position it at (reelXPos,reelYPos), (reelXPos+iconWidth-+horizontal-
Buffer,reelYPos), (reelXPos+2*(iconWidth-+horizontalBuffer,reelYPos)), etc.

Adapt the system startup behaviour so that it creates a SlotMachineGUI instance and calls initializeGUI on
it.

9.4 Updating the Views

Use the Observer RAM model to ensure that the reel views are redrawn whenever a reel is set to a new position.
To depend on the Observer model, hit the “+” button on the top left of the TouchRAM drawing area, and then
select the Observer model in the design patterns folder of the reusable model library. To establish the mappings,
click on the “triangle” button next to “Observer”, then click on “C+” to add a mapping for /Subject. Then create a
mapping for /modify by clicking on “O+". Repeat the same procedure for establishing a mapping of /Observer and
Jupdate.

Generate the Complete Design

When you are done, you might want to click on “Weave All” to look at the final design class diagram that combines
the structure of all RAM models (SlotMachineGUI, SlotMachine, Observer, ZeroToMany, Map, Singleton and
Named) into one.

Hand-In

Please hand in the SlotMachineGUI.ram file and a pdf or paper copy of your message views until Tuesday December
3rd by sending an email to Omar.Alam@mail.mcgill.ca with the title “COMP-533 assignment 3 of yournames” and
cc me as well (Joerg.Kienzle@mcgill.ca). If you don’t get an acknowledgment for your email, send us another email
(without attachment, but putting the handin somewhere where we can download it).

Remember that you are allowed to work in groups of 2, but not with a person you worked with for the final or
for a previous assignment. If you work with someone, please hand in a single copy with both names.

