Game Tree Search with Adaptation in Stochastic Imperfect Information Games

Darse BILLINGS, Aaron DAVIDSON, Terence SCHAUENBERG, Neil BURCH, Michael BOWLING, Robert HOLTE, Jonathan SCHAEFER, Duane SZAFRON

COMP 763 – Modern Computer Games
January 26, 2006
Outline

1. Introduction
2. History and Issues
3. Game Search Tree
4. Opponent Modeling
5. Experiments
6. Conclusion
Introduction

- Modeling the preferences and biases of humans is an important topic in AI

- We can easily gather enough data for a user, but using it to predict future patterns and behaviours is challenging
 - Even harder is to mine the data to predict human strategies in a competitive environment.
Introduction

- We use poker to explore challenging AI problems

- Why poker?
 - What distinguishes a good player from another is the ability to predict an opponent's hidden cards by his/her behaviour.
 - “Skillful opponent modeling is often the differentiating factor among world-class players.”
Introduction

- Current best program: PsOpti
 - Uses a minimax solution
 - Defensive strategy and assumes opponent has best cards.

 “You have a very strong program. Once you add opponent modeling to it, it will kill everyone.”
Introduction

5 cards
- High card
- Pair
- Two-Pairs
- Three of a kind
- Straight
- Flush
- Full House
- Four of a kind
- Straight Flush
Introduction

- **Texas Hold-'em**
 - Each player has 2 cards hidden from other players
 - Five *community* cards, which are shared among all players
 - *Call* (or *check*)
 - *Raise*
 - *Fold*

- Game ends when only one player left, or *showdown*.
Introduction

- Why Texas Hold-'em?
 - Seen as “most strategically complex poker variant.”
 - It is used at the World Series of Poker to determine the champion.

- This paper concentrates on two-player limit Texas Hold-'em
Outline

1. Introduction
2. History and Issues
3. Game Search Tree
4. Opponent Modeling
5. Experiments
6. Conclusion
History and Issues

- 3 decent Poker A.I.'s: Loki, Poki, and PsOpti
 - Rule-Based Expert System
 - Simulations
 - Game-Theory
 - Nash equilibrium
History and Issues

- Nash Equilibrium
 - *Optimal Strategy*
 - Defensive, no risk
 - No player has an incentive to deviate from the strategy because the alternatives *could* lead to worst result.
 - Theoretically in long run, no player (human or computer) should be able to beat it.
Issues with Nash Equilibrium

- Impossible to compute a true Nash Equilibrium solution for Texas Hold-'em.
- It is a fixed strategy, and strong human players will be able to exploit its weaknesses.
- To defeat human players, it requires a program that observes opponents and adapts to dynamically changing conditions.
History and Issues

- Best is to use a maximal player
 - Exploit any biases or preferences
 - Takes risk if it believes to have a higher expected value (EV)
Outline

1. Introduction
2. History and Issues
3. Game Search Tree
4. Opponent Modeling
5. Experiments
6. Conclusion
Game Search Tree

- Expectimax
 - Similar to minimax search with the addition of chance nodes

- Example: Rolling a die
 - Sum all values of children weighted by the probability of the event occurring.
 - \(P(X = x) = \frac{1}{6} \)
Game Search Tree

- Expectimax
 - Cannot be used for poker
 - Imperfect information
 - Nodes of trees are not independent
 - Do not know probability function of a human player behaving a certain way for each event.
Game Search Tree

- **Miximax & Miximix**
 - EV is computed at each node using the information we know of the player.

 - *Miximax:* Mixed nodes for opponents max nodes for us.
 - Leads to predictable play

 - *Miximix:* Randomize our policy as well
Game Search Tree

- Issues:
 - How do we determine the relative probabilities for the opponent?
 - Look at past actions (i.e. same, or similar, betting sequence)
 - How do we calculate the EV of a leaf node?
 - Fold: Net amount won/loss
 - Showdown: PDF over strength of opponent's hand, using similar situations in the past.
Game Search Tree

- So we end up with 4 different type of nodes:
 - Chance
 - Opponent decision
 - Program decision
 - Leaf
Game Search Tree

- Chance Nodes
 - Weighted sum of the EV of subtree for each possible outcome
 - This is dependent on the cards each player holds (which cannot be calculated)

\[
EV(C) = \sum_{\forall i \in \text{outcomes}} P(C_i) \times EV(C_i)
\]
Game Search Tree

- Opponent Decision Nodes
 - Estimated probability of each branch (call, fold, raise)

$$EV(O) = \sum_{\forall i \in \{f, c, r\}} P(O_i) \times EV(O_i)$$
Game Search Tree

- Program Decision Nodes
 - If mixed policy, similar to $EV(O)$:

 $$EV(U) = \sum_{\forall i \in \{f, c, r\}} P(U_i) \times EV(U_i)$$

 - If we are maximizing EV (maximax):

 $$EV(U) = \max(EV(U_f), EV(U_c), EV(U_r))$$
Game Search Tree

- **Leaf Nodes**
 - L: leaf node
 - L_{pot}: size of the pot
 - L_{cost}: cost of reaching leaf node
 - (in 2 player games, should be half of L_{pot})
 - P (win): Probability of winning

\[
 EV(L) = (P\text{ (win)} \times L_{pot}) - L_{cost}
\]
Game Search Tree
Outline

1. Introduction
2. History and Issues
3. Game Search Tree
4. Opponent Modeling
5. Experiments
6. Conclusion
Opponent Modeling

- Issues that make this problem difficult:
 - Must be rapid learning
 - Matches do not last thousands of hands
 - Strong players alternate their playing style
 - Only partial feedback
 - Often opponent cards are not revealed
 - Folding means what?
Opponent Modeling

- Unlike most Markov Decision Process problems, we are not looking at a static model.

- Handling observations:
 - Action decisions update betting frequencies corresponding to sequence of actions.
 - For showdowns, the hand rate (HR) shown by opponent is used to update the leaf node histogram.
Opponent Modeling

- $2 \times 9^4 = 13122$ leaf-level histograms
 - We don't have enough games to make sufficient number of observations to have reliable conclusion
 - Not to mention that worthy opponents usually change their strategies many times
 - We want to be able to base decisions on just dozens of hands rather than thousands
Opponent Modeling

- Generalize the observations
 - How do we accomplish this?
 - Finest level of granularity
 - Every sequence is distinct
 - Coarser abstraction:
 - Differentiate observations by number of bets and raises
 - Ignore at what stage if the hand they were made
Opponent Modeling

- Even coarser?
 - Sum total number of raises by both players
 - Ignore which player performed what action
 - Only 9 distinct classes!

- But remember:
 - More important to have usable data than have perfect correlations.
Opponent Modeling

- Their method is to use a mixture of all abstractions
 - All levels of abstraction contribute depending on how relevant the situation
Opponent Modeling

- Zero frequency problem
 - What happens when the program has no, or very little observations?
 - They combined a Nash equilibrium strategy to the mixing pot.
Opponent Modeling

- Players change their strategies often
 - We need to gradually forget old data and concentrate more on recent observations

- We use a history decay factor, h
 - We give all our observations a different weight depending on h.
 - Eg: $h = 0.95$
Outline

1. Introduction
2. History and Issues
3. Game Search Tree
4. Opponent Modeling
5. Experiments
6. Conclusion
Experiments

- Round-Robin Computer vs Computer
 - **Sparbot**: Latest version of PsOpti
 - Best program for this variant of poker
 - **Poki**: Formula based (w/opponent modelling)
 - Best program for 10-player poker
 - **Hobbybot**: Slowly adapting program
 - Designed to exploit Poki's flaws
 - **Jagbot**: Static formula-based
 - **Always Call**
 - **Always Raise**
Experiments

- Each match consisted of at least 10,000 hands
- Standard deviation: ±0.03 \(\text{sb/hand} \)
- Vs. Sparbot, Vexbot needed thousands of hands before able to exploit Sparbot's flaws

<table>
<thead>
<tr>
<th>Program</th>
<th>Vexbot</th>
<th>Sparbot</th>
<th>Hobbot</th>
<th>Poki</th>
<th>Jagbot</th>
<th>A.Call</th>
<th>A.Raise</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vexbot</td>
<td>+0.052</td>
<td>+0.349</td>
<td>+0.601</td>
<td>+0.477</td>
<td>+1.042</td>
<td>+2.983</td>
<td></td>
</tr>
<tr>
<td>Sparbot</td>
<td>-0.052</td>
<td>+0.033</td>
<td>+0.093</td>
<td>+0.059</td>
<td>+0.474</td>
<td>+1.354</td>
<td></td>
</tr>
<tr>
<td>Hobbybot</td>
<td>-0.349</td>
<td>-0.033</td>
<td>+0.287</td>
<td>+0.099</td>
<td>+0.044</td>
<td>+0.463</td>
<td></td>
</tr>
<tr>
<td>Poki</td>
<td>-0.601</td>
<td>-0.093</td>
<td>-0.287</td>
<td>+0.149</td>
<td>+0.510</td>
<td>+2.139</td>
<td></td>
</tr>
<tr>
<td>Jagbot</td>
<td>-0.477</td>
<td>-0.059</td>
<td>-0.099</td>
<td>-0.149</td>
<td>+0.597</td>
<td>+1.599</td>
<td></td>
</tr>
<tr>
<td>Always Call</td>
<td>-1.042</td>
<td>-0.474</td>
<td>-0.044</td>
<td>-0.510</td>
<td>-0.597</td>
<td>=0.000</td>
<td></td>
</tr>
<tr>
<td>Always Raise</td>
<td>-2.983</td>
<td>-1.354</td>
<td>-0.463</td>
<td>-2.139</td>
<td>-1.599</td>
<td>=0.000</td>
<td></td>
</tr>
</tbody>
</table>
Experiments

- Vexbot vs Humans
 - A lot less hands played
 - Very competitive vs. experts
 - Results showed a consistent marked increased in win rate after 200-400 hands
 - Due to opponent-specific modeling?

<table>
<thead>
<tr>
<th>Num</th>
<th>Rating</th>
<th>sb/h</th>
<th>Hands</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Expert</td>
<td>-0.022</td>
<td>3739</td>
</tr>
<tr>
<td>2</td>
<td>Intermediate</td>
<td>+0.136</td>
<td>1507</td>
</tr>
<tr>
<td>3</td>
<td>Intermediate</td>
<td>+0.440</td>
<td>821</td>
</tr>
<tr>
<td>4</td>
<td>Intermediate</td>
<td>+0.371</td>
<td>773</td>
</tr>
</tbody>
</table>
Outline

1. Introduction
2. History and Issues
3. Game Search Tree
4. Opponent Modeling
5. Experiments
6. Conclusion
Conclusion

- Following contributions:
 - Miximax & Miximix
 - Using opponent modeling to refine EV
 - Abstraction for compression of large set of observable data
 - Vexbot
 - Best poker program
 - Competitive vs expert humans.
Conclusion

- Future work:
 - Not take as long to learn new opponent
 - Improving the abstractions
 - Generalize to games with > 2 players
Conclusion

Questions