
Succinct Data Structures for Tree Adjoining Grammars

James King
Department of Computer Science
University of British Columbia

201-2366 Main Mall
Vancouver, BC, V6T 1Z4, Canada

king@cs.ubc.ca

Abstract

We present a set of data structures for the
succinct representation of tree-adjoining gram-
mars. The savings in space requirements com-
pared to a naive representation depend on the
grammar, but will in general be between a con-
stant factor and a logarithmic factor. We also
present a modification of the PATRICIA tree
structure and propose a possible modification
of the Directed Acyclic Word Graph (DAWG)
structure. These modifications enable more ef-
ficient queries regarding lexicographical rank.

1 Introduction

Tree-adjoining grammars (TAGs) are tree generation
systems first introduced in (Joshi et al., 1975). A com-
prehensive survey can be found in (Joshi and Schabes,
1997). Tree adjoining grammars generate mildly context-
sensitive languages and can also be used to generate
context-free languages in a far more concise and intuitive
way than CFGs.

In the realm of tree-adjoining grammars, much work
has been done with regards to time efficiency. However,
little has been done towards space-efficient representa-
tion of TAGs. In this paper we present a space-efficient
representation format for TAGs.

There are five components that make up a tree adjoin-
ing grammar.

1. Σ is the set of terminal symbols

2. NT is the set of non-terminal symbols

3. S is the special ‘start’ non-terminal symbol

4. I is the set of initial trees

5. A is the set of auxiliary trees

Storage of Σ and NT is covered in Sections 2 and 4.
Storage of I and A is covered in Section 3. Storage of S
is trivial and is mentioned in Section 2.1. In Section 5
we discuss the difficulty of parsing with this data struc-
ture and in Section 6 we discuss the usefulness of this
structure in practice.

2 Symbol Representation

2.1 The Start Symbol

The start symbol is a non-terminal symbol. Its only
significance is that it must be the root of any derived tree,
and it cannot appear anywhere else in a derived tree. If we
consider the start symbol to be a standard non-terminal,
the other mechanisms of tree-adjoining grammars (i.e.
constraints on adjoining) can ensure that the start symbol
behaves properly. Therefore we do not need to consider
it as special, though the grammar certainly will.

2.2 Terminals and Non-Terminals

In a TAG, terminals and non-terminals are generally
not labeled succinctly. That is, their labels generally use
more bits than necessary. In terms of succinct represen-
tation we have two main options: fixed length represen-
tation and variable length representation. Variable length
representation is potentially more concise (depending on
the relative frequencies of symbols in the grammar), but
fixed length representation allows us to navigate through
trees more easily.

2.2.1 Fixed Length Representation
In a fixed length representation, terminals and non-

terminals can be represented with as few as dlog |Σ|e bits
and dlog |NT|e bits respectively. We will use τ to de-
note the number of bits used to represent a terminal and
π to denote the number of bits used to represent a non-
terminal.

We will use a bit string of length τ to represent each
type of terminal node in our structure. The intuitive way

G

A .
.
.

I .
.
.

NT

Figure 1: A high level view of the TAG data structure for a grammar G. The boxes represent arrays, the rounded boxes
represent RIP arrays (see Section 4.3), and the triangles represent tree blocks (see Section 3.5).

to do this is to store the full labels of all terminals in an ar-
ray sorted in lexicographical order, though we will actu-
ally use a more sophisticated and succinct array structure
(see Section 4, especially 4.3). The bit string represen-
tation of a terminal will then be its index in that array.
We can do the same with non-terminals, storing them in a
separate array. It should be noted that this array is not ac-
tually necessary since non-terminal labels do not actually
matter for the purposes of generation, parsing, etc. How-
ever, many would find it an advantageous feature to know
that a non-terminal is, for example, of the type “NP” as
opposed to simply “001010”.

Using bit sequences of different lengths to represent
terminals and non-terminals enables us to store trees
more succinctly. However, when reading a node of a tree,
we will not know in advance how many bits are in its rep-
resentation. This is problematic when using a succinct
data structure; since we waste no space there are no de-
limiters, so we will not know when the representation of a
given node ends and the representation of the next one be-
gins. In parse trees every internal node is a non-terminal
and every leaf is a terminal, so we can tell from the struc-
ture of the tree how many bits to read. However, this
is not the case with the elementary trees and partially de-
rived trees of a TAG — non-terminal nodes can be leaves.
For this reason we will prefix every terminal with a 0 and
every non-terminal with a 1. Reading a 0 tells us that
the representation of this node is τ + 1 bits long, reading
a 1 tells us that the representation of this node is π + 3
bits long. The extra 2 bits in the representation of a non-
terminal are explained in Section 3.4.

2.2.2 Variable Length Representation

Variable length encoding of terminals and non-
terminals can be done via Huffman coding (Huffman,
1952). Symbols that appear more frequently in the repre-
sentation of the grammar will be given shorter codes. The
encodings of the symbols that minimize the total amount
of space used can be determined very efficiently given
the frequency of each symbol. The encodings are stored
in a binary tree with the symbols at the leaves, where the
path to a leaf determines the encoding of the correspond-
ing symbol. Starting at the root and moving towards the
leaf, simultaneously starting at the first bit of the encod-
ing and moving towards the last, following the edge to a
left child denotes a 0 in the current position of the encod-
ing and following the edge to a right child denotes a 1 in
that position.

The structure of this Huffman tree can be stored in
2n+o(n) bits using the technique of (Munro and Raman,
1997). This representation still enables navigation opera-
tions in constant time. The leaves of the tree can be stored
in a separate array. These leaves will not be symbols, but
rather lexicographical ranks of symbols (see Section 4).
Since the Huffman tree will not necessarily be a complete
binary tree (in fact we gain nothing from compression if
it is), retrieval of a leaf’s label will take linear time in the
worst case. These labels will not be needed often; one la-
bel query per symbol in a string to be parsed is sufficient.
Therefore this linear query time is acceptable.

When reading a variable length label, we will not know
in advance when the label ends. We must traverse the
Huffman tree while reading it. We will know that we
have read the last bit of the label when our traversal of
the Huffman tree reaches a leaf.

3 Tree Representation

There are three major components of the representa-
tion of each elementary tree. The first is the structure of
the tree, the second is the labeling of the tree’s nodes, and
the third is the set of adjoining constraints on each node
(see Section 3.4). An overview of the conversion process
from a tree to a succinct bit string is shown in Figure 4.

3.1 Tree Structures

It is well known that the structure of a general tree
can be stored using 2n bits, where n is the number of
nodes in the tree. It is also known that this representa-
tion is within an additive logarithmic term of the lower
bound. This succinct representation is constructed using
balanced parentheses. A leaf is represented by a closed
pair (). Recursively, an internal node is represented by a
closed pair with its child information inside. This child
information will simply be the concatenation of the rep-
resentations of the node’s children. It is not difficult to
see that this representation corresponds to a depth-first
traversal of the tree, where a left parenthesis means a
node is being visited for the first time and a right paren-
thesis means all of a node’s children have been visited.
An example of this representation is given in Figures 2
and 3. This parenthesis representation can be converted
to a string of 2n bits by replacing every left parenthesis
with a 0 and every right parenthesis with a 1.

1

2

3 4 5

6

7

8 9

Figure 2: A tree.

123344552678899761

((()()())((()())))

000101011000101111

Figure 3: Representations of the same tree.

Though this structure is very compact, traversal of a
tree in this representation is cumbersome. In the case
of binary trees, the structure can be augmented to enable
navigational operations in constant time using only sub-
linear overhead (Munro and Raman, 1997). Elementary
trees in a tree-adjoining grammar are not necessarily bi-

nary, but we could use dummy nodes to convert every
elementary tree to a binary tree, less than doubling the
number of nodes in the worst case.

This augmented structure could be considered when
storing a TAG with extremely large elementary trees, but
elementary trees of a TAG are typically far too small to
make this worthwhile. In practice an elementary tree with
more than 10 nodes would be anomalous, whereas the
primary application of the augmented succinct structure
is extremely large suffix trees. We will make the assump-
tion that the elementary trees are small enough that not
only will they easily fit in memory, but also it is not pro-
hibitively expensive to look at the entire tree when a tree
is accessed at all. Because the trees can be reconstructed
from their succinct representations in linear time, recon-
structing a tree from a space efficient representation be-
fore it is read is at most a constant factor slower than read-
ing the entire tree from any time efficient representation.

Based on our small tree assumption we choose to store
tree structure using the simple 2n bit representation. We
note that, if this small tree assumption were removed, we
could use the augmented structure of Munro and Raman.
This would ensure efficient traversal of the trees regard-
less of size. However, it could cost us up to twice as many
bits in structural representation (to make our trees binary)
and would force us to use fixed length representation for
terminal and non-terminal symbols.

3.2 Foot Nodes

Every auxiliary tree has a foot node. The foot node
is a non-terminal leaf with the same label as the root of
the auxiliary tree. Because the foot node has the same
label as the root of the same tree, we need not store its
label. As described in Section 3.4 every non-terminal is
prefixed with a 2 bit code (after the 1 that tells us it is a
nonterminal). We can use one of these codes to label the
foot node of an auxiliary tree. This special code essen-
tially says that the node is the foot node, the node’s true
label is that of the root, and the node’s label is omitted. In
this way we handle foot nodes at no storage cost except
for the three bit code.

3.3 Marking Non-terminals for Substitution

In a partially derived tree, certain non-terminal nodes
are marked for substitution. Substitution must occur at
these nodes, adjunction cannot occur at these nodes, and
substitution cannot occur at any other nodes. However,
by the definition of a tree-adjoining grammar, a node is
marked for substitution if and only if it is a non-terminal
leaf node that is not the foot node of an auxiliary tree.
These markings are therefore implicit and, in any given
tree, marked nodes can easily be determined. For this

reason we do not need to worry about the issue of mark-
ing for substitution.

3.4 Adjoining Constraints

Adjoining constraints are potentially the most space-
consuming component of tree-adjoining grammars. Ev-
ery internal node in an elementary tree has adjoining con-
straints that dictate which auxiliary trees can be adjoined
at that node. The types of adjoining constraints are as
follows:

• Null Adjunction (NA): no adjunction is allowed at
this node.

• Obligatory Adjunction (OA(T)): an auxiliary tree
from the set T ⊆ A must be adjoined at this node.

• Selective Adjunction (SA(T)): an auxiliary tree
from the set T ⊆ A can be adjoined at this node,
though no adjunction is required.

The type of adjoining constraint will be stored with ev-
ery non-terminal in a 2 bit code, after the 1 that tells us it
is a non-terminal and before the node’s label. We also use
one of these codes to identify foot nodes as mentioned in
Section 3.2. The codes are as follows:

• 00 - Null Adjunction

• 01 - Foot Node

• 10 - Selective Adjunction

• 11 - Obligatory Adjunction

Null adjunction requires no additional representation,
but with obligatory adjunction and selective adjunction
we must store the set T ⊆ A. At first glance it seems
that there are 2|A| possibilities for this set and that its rep-
resentation requires |A| bits. However, using R to de-
note the non-terminal symbol on which we are consid-
ering adjunction, we make an observation that can save
us a considerable amount of space. We observe that T

can be more strictly be defined as a subset of AR, where
AR ⊆ A is defined as the set of auxiliary trees that have
the non-terminal symbol R as their roots. This restricts
the number of possibilities of T to 2|AR|, allowing us to
represent T using only |AR| bits.

In order to use this optimally compact representation
of T , we must sort the auxiliary trees by root. This is
not a problem since the auxiliary trees need not be in any
other order. The auxiliary trees will therefore be indexed
by numbers from 0 to |A|; in a table of size |NT | log |A|
we can store a map from each non-terminal symbol to the
index of the first tree with that symbol as the root. We
store T using a bit string of length |AR|. The tree in AR

with the ith smallest index is a member of T if and only
if there is a 1 in the ith position of this string.

We must store the size |AR| for each non-terminal R.
When we read the nodes of a tree to reconstruct it, we
can construct a list of the nodes that require set storage
(i.e. the nodes marked for OA(T) or SA(T)) and make
note of the sizes of the sets. This is necessary so that,
when reading the sets, we know when a set representation
begins and ends.

Storing adjoining constraints will be the greatest cost
for a typical TAG. Even assuming that the largest elemen-
tary tree is of constant size, it could cost us on the order
of

|A| · |A ∪ I |

bits. Our reduced subset representation from |A| to |AR|
bits is therefore extremely important.

3.5 Overview

Now that we have described how to store the more
complex components, we must explain how they are
brought together. Each elementary tree will be stored in a
single block that is a contiguous string of bits. The struc-
ture of these tree blocks is simple. Each consists of the
tree’s structure, followed by the tree’s nodes, followed by
the adjoining constraints of the nodes (See Figure 5). We
will store a header for each tree that holds three pieces
of information: the address of the start of the block, the
number of terminals in the tree, and the number of non-
terminals in the tree. This is sufficient for the reconstruc-
tion of a tree.

Tree Structure

Nodes

Adjoining

Constraint

Subsets

Figure 5: The block of bits for a tree.

The sets I and A of elementary trees will each be stored
as an array of these headers. The format of the headers is
the same for both. When looking at a tree we will know
whether it is an initial tree or an auxiliary tree based only
on what set we came from. It is crucial to know what
type of tree it is — auxiliary trees will have a foot node

S NP VP V likes NP= +

(()((())()))

001000110111

S

NP

NP

VP

V

likes

S

NP

VP

V

likes

100

000

001

011

10010

000 001 011 100 10010 001

add terminal/nonterminal markers

1000 1001 1011 1100 010010 1001

add adjoining constraint markers

100000 100001 111011 100100 010010 100001

001000110111100000100001111011100100010010100001

Figure 4: The conversion process from a tree to a succinct bit string. The VP node is marked for obligatory adjunction,
though its adjunction set is omitted from the diagram. All other nodes are marked for null adjunction.

with no label, which means that the adjoining constraints
will start π bits before they would in an initial tree with
corresponding nodes.

4 Symbol Set Representation

Two storage options are immediately apparent for the
sets Σ and NT.

4.1 Sorted Arrays

The first option is sorted arrays. This is the simplest
way to store these sets. Since the index of a symbol is
stored implicitly (by the symbol’s location in the array),
a sorted array has the advantage that there no overhead in
terms of space requirements. Given an index, we can find
the corresponding terminal or non-terminal in constant
time. Given a terminal or non-terminal, we can find its
index in log |Σ| or log |NT | time respectively via binary
search. Since few index lookups will ever be performed
(basically only one per symbol of a string being parsed),
this logarithmic time cost is acceptable.

4.2 PATRICIA Trees

The second storage option for our symbol sets is PA-
TRICIA trees. PATRICIA trees are trees in which each
edge is labeled with one or more characters and each leaf
corresponds to a string in our set. The string at a leaf
will be the string formed by concatenating the characters
of the edge labels on the path from the root to that leaf.
For a detailed explanation of PATRICIA trees, see, for
example, (Knuth, 1998). The most attractive feature of

PATRICIA trees is that any prefix of a string in the set is
stored only once. For large string sets this can eliminate
a great deal of redundant data. See Figure 6 for an exam-
ple of a PATRICIA tree and how it eliminates redundant
data.

LI

KE

N$$

N

E$ K$

KIN

KD

Figure 6: A PATRICIA tree storing the words LIKE,
LIKEN, LINE, LINK, KIND, and KINK.

Testing if a string is stored in a PATRICIA tree is very
fast. However, speed is not of great concern to us for our
current application, especially when the difference is only
a logarithmic factor. Elimination of redundant prefixes is
the only significant advantage that PATRICIA trees give
to us. Since the lexicographic ranks of strings in a PA-
TRICIA tree are not stored implicitly, we must store the
rank with every leaf. This, combined with the pointers in-
volved in a typical implementation of a PATRICIA tree,

require storage that we would rather not use. Moreover,
to determine the string corresponding to a given rank, we
must essentially do a binary search of the leaves of the
PATRICIA tree.

4.3 RIP Arrays

To combine the advantages of sorted arrays with those
of PATRICIA trees, we introduce a hybrid data structure
which we will call the Rank Indexed PATRICIA (RIP) ar-
ray. A RIP array stores strings in an array in sorted order,
but also includes pointers to eliminate storage of redun-
dant prefixes. The trick to using these pointers is to store
the strings in reverse order, with the last character ap-
pearing first. In this way, prefixes of the words become
suffixes in the RIP array. If two strings in the set with
ranks i and j have a prefix in common, the representation
of the jth word will contain the different ending, stored in
reverse order, followed by a pointer to the common pre-
fix as represented for the ith word. An example of this
structure is shown in Figure 7.

LK IE

N

NE

K

K

KIND

Figure 7: A RIP array storing the words LIKE, LIKEN,
LINE, LINK, KIND, and KINK in sorted order.

Compared to PATRICIA trees, RIP arrays use slightly
less storage (the pointers to leaf nodes in the PATRICIA
tree are emulated for free in the corresponding RIP ar-
ray). The main advantages of RIP arrays are that the lexi-
cographic rank of a string is stored implicitly and rank to
string queries require only constant time. The disadvan-
tage is that, to compare a given string to a string in a RIP
array, the entire string must be read from the RIP array,
whereas PATRICIA trees can detect a different character
after only reading the string up to that character. This is
inconsequential to us; we will store our word sets in RIP
arrays because of the storage savings.

4.4 DAWGs

There exists another data structure for string sets, the
Directed Acyclic Word Graph (DAWG), that is even more
compact than PATRICIA trees or RIP arrays (Blumer et
al., 1985). A DAWG is a directed acyclic graph one
source (the start node) and one sink (the end node). Each
other node has a character associated with it. For each
string in the set there is a path from the start node to the
end node such that the internal nodes of the path spell out
the string (see Figure 8).

L
K

I
E N

N E

K

K

I N D

$^

Figure 8: A DAWG storing the words LIKE, LIKEN,
LINE, LINK, KIND, and KINK in sorted order.

DAWGs eliminate not only redundant prefix data, but
also redundant suffix data. Unfortunately DAWGs are
such that determining the lexicographical rank of any
string in the set would require a depth-first search for that
string. This could take linear time, even with the assump-
tion that the longest string is of constant length.

An issue that we consider is this: can we augment a
DAWG, at most multiplying its size by a constant, such
that we can perform rank queries in logarithmic time, or
even log2 time? Perhaps. One idea is this: we construct
a series of sub-DAWGs. Each sub-DAWG has at most
half the vertices of the previous one, until we get to a
DAWG of constant or logarithmic size. For efficient rank
querying we require that each sub-DAWG represents a
word set that has a representative sample of the word set
of the previous one. We define a representative sample as
follows:

G′ is a sub-DAWG of a DAWG G. S is the word set
represented by G. S ′ ⊆ S is the word set represented
by G′. We say that S′ has a representative sample of S

if and only if, for each pair of strings i, j in S ′ that are
lexicographically adjacent in S ′ (i.e. their ranks in S ′

have difference 1), their rank difference in S is at most
logarithmic in the size of S.

We can build a series of sub-DAWGs that enable effi-
cient querying if, for any DAWG G, we can build a sub-
DAWG G′ such that the word set encoded by G′ has a
representative set of the word set encoded by G. This

can be done trivially, but to ensure that our entire series
of sub-DAWGs does not increase the original DAWG by
more than a constant factor we need to add the stipulation
that G′ has at most half as many vertices as G.

Assuming we can create such a series of sub-DAWGs,
we can do a rank query for a string s as follows. We start
at the smallest DAWG. Searching for a string s we find
the last word in that DAWG that comes before s (or if we
find s we are done. We then move on to the next smallest
DAWG and do the same, though we use that word as a
starting point for our search. We find the last word in that
second DAWG that comes before s, then move on to the
next smallest, etc.

We can store an array for each DAWG with one en-
try per string. Given the rank of a string s in G′, this
array will tell us the rank of s in G. From these arrays
we can determine the total number of strings we skip
in our query, thereby determining the rank of s. The
fact that each sub-DAWG encodes a representative set
of its ‘parent’ DAWG ensures that we never spend more
than logarithmic time in any given DAWG. Since every
sub-DAWG has at most half as many vertices as its par-
ent DAWG, there are at most a logarithmic number of
DAWGs in our series. Therefore a rank query will take at
most log2 |S| time.

It is not immediately clear that a good series of sub-
DAWGs can be built. This is something we will continue
to investigate.

5 Parsing

Unfortunately efficient parsing is not possible with a
TAG stored in this format. All efficient TAG parsers re-
quire at least efficient querying of the form “Given this
symbol, which trees could it have come from?” See, for
example, (Joshi and Schabes, 1997), (Nederhof, 1999),
(Satta, 1994). In the worst case this information could
require

Θ (|Σ ∪ NT| · |I ∪ A|)

additional storage. In practice, however, less storage will
generally be required. Each terminal symbol will exist
in only a small number of elementary trees, so we can
store this information for terminals in lists. The num-
ber of non-terminals will typically be far smaller than the
number of terminals (|NT| <

√

|Σ|), so we can store the
information for non-terminals in an array.

6 Practical Considerations

A group of researchers at UPenn has constructed tree-
adjoining grammars for both English (Group, 2001) and
Korean. In practice, TAGs are unlikely to be much big-
ger than the TAG for the English language. The XTAG

group’s representation of this grammar is about 2MB
large. Any reasonably powerful computer can therefore
hold the entire grammar in memory. For this reason, it
is unlikely that a succinct TAG representation would be
useful in practice. It is somewhat conceivable that cer-
tain portable computers with less than 2MB of memory
could be used to store a large TAG (a very sophisticated
pocket translator, for example), but it is extremely un-
likely that such a computer would be powerful enough
to do anything with such a grammar. TAG parsing, for
example, cannot be done in much less than O(n6) time
(Satta, 1994).

The XTAG system also uses implicit morphology in its
grammar. This saves a large amount of space in the stor-
age of Σ. This morphology is not in the strict definition
of tree-adjoining grammars, and it cannot be ported to
our TAG structures. In short, practical TAGs make use of
mechanisms that are not in the strict definition of TAGs,
so this makes our structure even less viable in practice.

7 Conclusion

We have presented a set of data structures for the ef-
ficient storage of tree-adjoining grammars. Though the
savings in storage is at least a significant constant factor,
the usefulness of the succinct representation is question-
able; TAGs are not extremely large in practice, so time
efficiency is far more important than space efficiency.

More interesting, perhaps, are the representation of
PATRICIA trees and proposed possible representation of
DAWGs that enable faster queries related to lexicograph-
ical rank. We are particularly interested in pursuing the
augmented DAWG structure since rank related queries in
DAWGs currently require linear time — an improvement
of this time to logarithmic would be significant.

References
A. Blumer, J. Blumer, D. Haussler, A. Ehrenfeucht, M. T.

Chen, and J. Seiferas. 1985. The smallest automaton
recognizing the subwords of a text. Theoretical Com-
puter Science, 40(1):31–55, July.

XTAG Research Group. 2001. A lexicalized tree adjoin-
ing grammar for english. Technical Report IRCS-01-
03, IRCS, University of Pennsylvania.

David A. Huffman. 1952. A method for the construc-
tion of minimum-redundancy codes. Proceedings of
the IRE, 40(9):1098–1101, September.

Aravind K. Joshi and Yves Schabes. 1997. Tree-
adjoining grammars.

Aravind K. Joshi, Leon S. Levy, and Masako Takahashi.
1975. Tree adjunct grammars. Journal of Computer
and System Sciences, 10(1):136–163, February.

Donald E. Knuth. 1998. The art of computer program-
ming, volume 3: (2nd ed.) sorting and searching. Ad-
dison Wesley Longman Publishing Co., Inc.

J. Ian Munro and Venkatesh Raman. 1997. Succinct
representation of balanced parentheses, static trees and
planar graphs. In 38th Annual Symposium on Founda-
tions of Computer Science: October 20–22, 1997, Mi-
ami Beach, Florida, pages 118–126. IEEE Computer
Society Press.

Mark-Jan Nederhof. 1999. The computational complex-
ity of the correct-prefix property for TAGs. Computa-
tional Linguistics, 25(3):345–360.

Giorgio Satta. 1994. Tree adjoining grammar pars-
ing and boolean matrix multiplication. Computational
Linguistics, 20(2):173–192.

