
Terrain Guarding is NP-Hard

James King∗ Erik Krohn†‡

October 20, 2009

Abstract

A set G of points on a 1.5-dimensional terrain, also
known as an x-monotone polygonal chain, is said to
guard the terrain if every point on the terrain is seen by
a point in G. Two points on the terrain see each other
if and only if the line segment between them is never
strictly below the terrain. The minimum terrain guard-
ing problem asks for a minimum guarding set for the
given input terrain. Using a reduction from PLANAR
3-SAT we prove that the decision version of this problem
is NP-hard. This solves a significant open problem and
complements recent positive approximability results for
the optimization problem.

1 Introduction

An instance of the terrain guarding problem contains a
terrain T that is an x-monotone polygonal chain. An
x-monotone chain in <2 is a chain that intersects any
vertical line at most once. The terrain is given by its
set of vertices P = {v1, v2, ..., vn}, where vi = (xi, yi).
The vertices are ordered such that xi < xi+1. There
is an edge connecting each (vi, vi+1) pair where i =
1, 2, ..., n − 1. We say a point p on the terrain sees
another point q on the terrain if the line segment pq
is never strictly below the terrain T .

A set G of points on the terrain is called a guarding
set if every point on the terrain is seen by some point
in G. The optimization version of the terrain guarding
problem is the problem of finding a minimum guarding
set for a given terrain. There are two standard versions
of the terrain guarding problem: a discrete version and
a continuous version. The discrete version allows us
to place guards only at the vertices of the terrain. The
continuous version, which we have defined above, allows
guards to be placed anywhere on the terrain. In other
versions a subset of points on the terrain to guard is
given with the input.

∗School of Computer Science, McGill University,
jking@cs.mcgill.ca
†Department of Computer Science, University of Iowa,

eakrohn@cs.uiowa.edu
‡Corresponding author

Motivation for guarding terrains comes from sce-
narios that include covering a road with street lights or
security cameras. Other applications include finding a
configuration for line-of-sight transmission networks for
radio broadcasting, cellular telephony and other com-
munication technologies [1].

The complexity of terrain guarding has been an
open problem of interest since 1995, when an NP-
completeness proof was proposed but never completed
by Chen et al. [2]. With the problem’s hardness
strongly suspected but not known, a series of ap-
proximation algorithms have been developed over the
last decade. The first constant factor approximation
for the terrain guarding problem was shown by Ben-
Moshe et al. in [1]. Clarkson and Varadarajan also
give a constant factor approximation in [3]. A 4-
approximation was proposed by King in [11] but fur-
ther analysis increased the approximation factor to 5.
A 4-approximation was given by Elbassioni et al. in
[7]. Recently a PTAS was given by Gibson et al. in
[9]. With the knowledge that the problem is not APX-
complete, it is of even greater interest whether or not it
is NP-complete, and this has been reiterated with each
approximation algorithm developed.

The terrain guarding problem is closely related
to the art gallery problem that involves guarding the
interior of a polygon. The basic version of the art gallery
problem is that of vertex guarding a simple polygon,
where we are given a simple polygon and we wish to
find the smallest subset of the vertices that see the entire
polygon. The point guarding version allows guards to be
placed anywhere inside the polygon.

The art gallery problem was shown to be NP-
complete by Lee and Lin in [13]. Along with being NP-
complete, the art gallery problem was shown to be APX-
hard in [6]. This means that there exists a constant ε >
0 such that no polynomial time algorithm can guarantee
an approximation ratio of 1 + ε unless P = NP . Ghosh
provides a O(log n)-approximation for the problem of
vertex guarding an n-vertex simple polygon [8]. The
point guarding problem seems to be much harder than
the vertex guarding problem and precious little is known
about it [5]. A restricted version of the point guarding

problem where the polygon is x-monotone has been
shown to have an O(1)-approximation by Nilsson in [17].
Based on his result Nilsson also provides a O(OPT 2)
approximation for rectilinear polygons.

Straightforward attempts to show NP-hardness for
the terrain guarding problem run up against the large
amount of restriction in the complexity of terrains.
By far the most significant restriction is given by the
following claim first noted by Ben-Moshe et al. [1]:

Claim 1. (Order Claim) Let a, b, c, d be four points
on the terrain in increasing order of x-coordinates. If a
sees c and b sees d, then a sees d.

The order claim is crucially exploited by all approx-
imation algorithms for the problem. In this paper we
develop a construction that overcomes the order claim
obstacle and shows that the terrain guarding problem
is NP-hard. Therefore, an exact polynomial time algo-
rithm is not possible unless P = NP. The NP-hardness
result is shown for the standard discrete and continuous
variants of the problem.

According to Demaine and O’Rourke [4], the com-
plexity of the terrain guarding problem was posed by
Ben-Moshe. We quote from [4]:

What is the complexity of computing the
guard set of minimum size for a given x-
monotone chain in the plane? According to
the poser, “most tenured professors think the
problem is NP-hard.” This problem in fact
goes back to 1995, when Chen et al. [2] claimed
an NP-hardness result, but “the proof, whose
details were omitted, was never completed suc-
cessfully” [11].

Main result This paper contains a single result that
resolves a long-standing open problem. Here we state
the result and sketch the proof; the rest of the paper is
dedicated to the full proof.

Theorem 1. Minimum terrain guarding is NP-hard.

Proof. Let Φ = (X,C) be a Boolean formula in 3-CNF
with |X| = n and |C| = m. Specifically, we require that
Φ is a planar formula in 3-CNF (see Definition 1). In
our reduction we construct in polynomial time a terrain
TΦ that can be guarded by f(Φ) guards if and only if
Φ is satisfiable. Here f is a function mapping planar 3-
CNF formulae to the natural numbers, such that f(Φ) is
polynomial in n and is computable in time polynomial
in n.

TΦ is built in several steps. First, we build a path
representation of Φ, denoted PΦ, in which each node

stores a list of variables. The relationship between vari-
able lists in adjacent nodes is strictly defined. Some
nodes are specially marked as clause nodes or deletion
nodes. This path representation, along with the PLA-
NAR 3-SAT problem, is discussed in Section 2.

From the path representation PΦ we then construct
TΦ. As this is an intricate process we separate the
construction into two parts. In Section 3 we explain
how to construct a terrain for n variables such that any
minimum guarding set corresponds to a consistent truth
assignment of the variables. In Section 4 we explain how
additional gadgets are incorporated into such a terrain
to construct TΦ such that any guarding set of size f(Φ)
corresponds to a consistent truth assignment satisfying
Φ.

2 Path representations for PLANAR 3-SAT

In this section we introduce the PLANAR 3-SAT prob-
lem. We then describe how to express an instance of
this problem in a format that lends itself naturally to
embedding in a terrain using our truth assignment prop-
agation framework from Section 3. The gadgets used for
the embedding process are described in Section 4.

Defining PLANAR 3-SAT Many variants of 3-SAT
are NP-hard; reductions from restricted variants are
sometimes far simpler than reductions from general 3-
SAT. In particular, PLANAR 3-SAT is often used to
prove NP-hardness of geometric problems (see, e.g.,
[16]). We adapt the following definition from Mulzer
and Rote [16].

Definition 1. (PLANAR 3-SAT) Let Φ be a
Boolean formula in 3-CNF. The formula graph of
Φ, G(Φ), has one variable-vertex vx for each variable
x and one clause-vertex vC for each clause C. The
variable-vertices vx are connected by edges to form a
variable cycle, and for each clause-vertex vC an edge
(vC , vx) is added if C contains either literal x or x.
We say Φ is planar iff G(Φ) is planar. The PLANAR
3-SAT problem is equivalent to the 3-SAT problem
restricted to planar formulae.

Theorem 2.1. (Lichtenstein [14] Theorem 2)
PLANAR 3-SAT is NP-complete.

The variable cycle divides the plane into two re-
gions, the interior and exterior of the cycle. Let C−
(resp. C+) be the set of clauses on the interior (resp.
exterior) of the variable cycle. Let n be the number of
variables. The most convenient way for us to now visu-
alize Φ is that given by Knuth and Raghunathan1 [12]

1The layout described by Knuth and Raghunathan actually has
the variables on a horizontal line, but having them on a vertical

x4

x3

x5

x1

x2

C1

C2

C3

C4

C5

Figure 1: An instance Φ with three-legged clauses laid
out to the left and right of the variables. Crosses on the
lines indicate negations. For example, C1 = (x1∨x3∨x5)
and C4 = (x2 ∨ x3 ∨ x4).

in which the variables x1, . . . , xn are laid out from top
to bottom on a vertical line with three-legged clauses
laid out to the left and right of this line. The edges are
rectilinear, the clauses from C− all lie to the left of the
variables, and the clauses from C+ all lie to the right of
the variables (see Figure 1).

Motivation for using PLANAR 3-SAT The only
way we have been able to propagate a truth assignment
around a terrain is in a linear ‘highway’, with each
variable living in a ‘lane’ of the highway. We have
been unable to reorder the variables in this highway, and
we have only developed very restricted clause gadgets.
Because of this, difficulties arose because each 3-CNF
clause gadget would act like a ‘roadblock’ for the middle
of the three variables involved, after which we could not
continue to propagate that variable’s truth assignment.
Our solution is to arrange the variables and clauses in
a way that ensures that each variable is the middle
variable in at most two clauses, and that the variable
will only be used in the length of the highway that is
between these two clauses.

If, for some i ∈ [2, n − 1], xi does not appear as
the middle variable in a clause in C−, we add a deletion

line is more convenient for our explanation.

node to G(Φ) that is adjacent only to vxi
and lies on

the left side of the variable line. We do the same for C+
on the right side of the variable line. An example can
be seen in Figure 2. This deletion node will be used in
the following description of a removal ordering.

A removal ordering for Φ Considering Φ as laid out
in Figure 1, it is not difficult to see that the clauses
can be removed in an order such that a clause being
removed has nothing ‘between its legs’. We call such
an ordering a removal ordering and order the sets C−
and C+ separately. Without loss of generality we can
assume that x1 and xn are used in two common clauses,
one in C− and one in C+. If this is not the case, we can
replace Φ with a new formula Φ′ by adding a variable
xn+1, a clause (x1 ∨ xn ∨ xn+1) in C−, and a clause
(x1 ∨xn ∨xn+1) in C+. An assignment of true to xn+1

will satisfy both new clauses without affecting any other
clauses, so Φ′ ⇔ Φ and the size of Φ′ is linear in the size
of Φ. Therefore it is safe to assume that x1 and xn are
used in two common clauses and this additional clause
is unnecessary.

We describe the removal ordering for C−. There is
an associated list of variables from which one variable
will be removed at each step. At the beginning of the
process the variable list contains all variables. At each
step we can remove:

• a clause with nothing between its legs, along with
the clause’s middle variable,

• a deletion node whose associated variable is not
used in any remaining clauses in C−, along with its
associated variable.

To avoid ambiguity, we always perform the action that
removes the variable with the lowest index. At the end
of the process the variable list contains only x1 and xn,
and no clauses remain.

The key property of such a removal ordering is
that, whenever a clause is removed, it involves three
consecutive variables from the variable list. This will
allow our reduction to work even with our extremely
restricted clause gadgets.

Building a path from a removal ordering We con-
struct two sequences α and β of variable lists corre-
sponding to removal orderings of C− and C+ respec-
tively. For 0 ≤ i ≤ n − 2, the list αi contains the
variables remaining after the first i removals in the re-
moval ordering for C−. In particular, this means that
α0 = (x1, x2, . . . , xn) and αn−2 = (x1, xn). β is built
similarly from the removal ordering for C+.

We construct the path PΦ based on the variable lists
in the order αn−2, . . . , α1, α0, β0, β1, . . . , βn−2. Such

x4

x3

x5

x1

x2

C1

C2

C3

C4

C5

D1

Figure 2: The same layout as in Figure 1 with an addi-
tional deletion node. The respective removal orderings
are (C2, C3, C1) and (C4, D1, C5). Each variable is only
used in between the two clauses that use it as the middle
variable, so the issue of clauses acting as ‘roadblocks’ for
middle variables is not a problem.

a path is shown in Figure 3. This path is a basic
representation of how Φ can be turned into a linear
‘highway’ so it can be embedded in TΦ. The deletion
nodes ensure that, for each variable other than x1

and xn, the variable’s lane is actually bounded by two
‘roadblocks’.

Running time A planar embedding of a planar graph
can be found in linear time [10, 15]. The other tasks
involved in constructing TΦ from Φ can be performed
trivially in polynomial time.

Truth assignment propagation with clause evalu-
ation We can think of the variable assignment as start-
ing in the middle of PΦ and being propagated out to the
left and right. Our technique for propagating a consis-
tent truth assignment in a variable highway is discussed
in Section 3. This includes standard variable gadgets
used for propagation, as well as deletion gadgets used
as endpoints for variable lanes. For a reduction from
SAT we need to determine if there is a consistent truth
assignment that satisfies the clauses of Φ. Two of the
main types of gadgets we need are for evaluating α-
clauses while a truth assignment is propagated upwards
and for evaluating β-clauses while a truth assignment is
propagated downwards. These gadget types, along with
the inversion gadget that inverts a variable (swaps the
positions of guards representing true and false), are
discussed in Section 4. The locations of the gadgets will
be determined by PΦ.

Variable lanes and general layout To propagate a
variable assignment around the terrain, our reduction
‘reflects’ the assignment back and forth over a main
valley. Each reflector has n slots – one for each variable
lane. The slots in a reflector are stacked with the slot
for x1 being the highest and the slot for xn being the
lowest. Most reflectors will not transmit information
about all n variables since most variable lists in PΦ do
not contain all variables. When a reflector does not
transmit information about a variable xi, the slot for xi

will be empty, i.e. it will be a straight line segment (see,
e.g., Figure 6). Thus empty slots act as space holders,
and the positions of variable slots do not depend on
which (or how many) slots are active in a given reflector.

Generally, multiple reflectors (though always a con-
stant number) may be required to implement each step
in the path PΦ. Each reflector takes up the same amount
of space, i.e. has the same size rectilinear bounding box.
Interacting gadgets near the bottom of the terrain are
closer to each other than interacting gadgets at the top
of the terrain. To ensure that slopes of important lines
of sight are of the same order of magnitude, we can ‘pad’

α0α1α2α3 β0 β1 β2 β3

x1
x2
x3
x4
x5 b

ot
to

m

to
p

b
ot

to
m

to
p C1

C3

C2

C4

D1

C5

x1
x2
x3
x4
x5

Figure 3: A horizontal layout of Φ (above) that alludes to its treatment as a variable highway. The path
representation PΦ (below). The variables x1, . . . , x5 are shown as the lines from top to bottom, with dashed lines
representing variables being deleted. Crosses on the lines indicate negations. Note in the α sequence that x1 is
negated because the negative literal x1 appears in C2, and x1 is later negated again because the positive literal
x1 appears in C1.

the lower part of the main valley so that all of the re-
flectors are in the top half of the terrain. In this way,
gadgets that interact with each other are always the
same horizontal distance apart up to a constant multi-
plicative factor. We can also add padding to the walls
between reflectors so that gadgets that interact with
each other are always the same vertical distance apart
up to a constant multiplicative factor. Both types of
padding increase the size of the terrain by at most a
constant factor; neither type is shown in our figures.

3 Truth assignment propagation in a terrain

When studying the computational complexity of a prob-
lem it is often useful to consider the problem’s locality.
If a local change in a terrain can have a global effect
on the optimal solution we may be able to exploit this
nonlocal behavior to transmit information in a reduc-
tion. Specifically, we may be able to use it to transmit
a truth assignment to different clauses. With this in
mind, our first goal is simply to propagate a truth as-
signment around a terrain. Our greatest concern is en-
suring that the truth assigment is consistent, i.e. that
variables have the same value wherever they are repre-
sented in the terrain.

In this section we will deal with two types of terrains
that introduce some of the important principles used
in our full reduction terrains. First we consider truth
assignment propagation terrains. In these terrains, we
have a variable highway for n variables, and every
variable slot is active in every reflector. Our main
conclusion for these terrains is given as Observation
1. We then introduce deletion gadgets so that variable
lanes can have endpoints other than the top and bottom
reflectors. Our main conclusion for these terrains with
deletion gadgets is given as Observation 2.

v1(x1)

d

v0(x1)

Figure 4: A variable gadget. Any point that sees the
distinguished point d is dominated by v0(x) and v1(x).

Encoding a truth assignment We will start out as
simply as possible, encoding a single Boolean variable
without any propagation. An example is shown in
Figure 5. The variable gadget (see Figure 4) has a
distinguished point, d, that can be seen from only two
other vertices. These two vertices, call them v0(x1) and
v1(x1), respectively represent an assignment of false
and true to the variable x1. Any point that sees d is
dominated by either v0(x1) or v1(x1). Therefore, for
any minimum guarding set there exists a corresponding
guarding set of the same size that contains either v0(x1)
or v1(x1). We can assume without loss of generality
that any minimum guarding set for the terrain contains
a guard on at least one of these points. Similarly, any
point that sees the rightmost vertex is dominated by

v1(x1)

d

v0(x1)

vtop

Figure 5: The simplest ‘truth assignment propagation
terrain’ with one varible and no propagation.

vtop so we can assume that any minimum guarding set
contains vtop. We make these assumptions in order to
discuss minimum guarding sets more cleanly; later on
we will make similar assumptions without mention.

To encode an arbitrary number of variables, still
without propagation, we simply stack variable gadgets
on top of each other to create a basic reflector called an
assignment gadget. An example is shown in Figure 7. A
minimum guarding set for that terrain contains vtop as
well as one guard for each of the three variable gadgets,
corresponding to any truth assignment we want. This
can be generalized to a truth assignment for any number
of variables.

Distinguished points and internal guards The
distinguished point d in a variable gadget cannot be seen
from outside the gadget. This ensures that any guarding
set contains at least one point in each variable gadget.
This is essential for proving correctness of our reduction.
Certain gadgets require internal guards, between 0 and
2 depending on the gadget type. If all internal guards
in the terrain interact in the right way, i.e. if they
correspond to a consistent truth assignment satisfying
the clauses of Φ, then they are sufficient to guard the
entire terrain. If Φ is not satisfiable, the same number of
internal guards will be required to see the distinguished
points, but at least one additional guard will be required
to guard the rest of the terrain. Thus f(Φ) will simply
be the number of internal guards required, and will be
trivially computable from the numbers of gadgets of
each type. In this accounting we consider the guards
required at vtop and vbottom to be internal guards.

x1

x2

x3

x4

x5

Figure 6: An assignment gadget. The slots correspond-
ing to lanes for x2 and x3 are empty.

Propagating a truth assignment Now that we can
encode an arbitrary truth assignment, we want to be
able to propagate it consistently around the terrain.
We do this by reflecting the assignment back and forth
across a central valley. Each assignment gadget will
interact with two assignment gadgets on the opposite
side of the valley, taking input from the one above and
giving output to the one below. The assignment gadgets
on the right side of the valley are mirror images of
those on the left side, though the position of guards
representing true and false is swapped. An example
of the reflecting behavior is shown in Figure 8, a variable
interaction is shown in Figure 9, and the details of
the variable interaction are shown in Figure 10. The
way a variable’s assignment is propagated down the
terrain holds the key to understanding the complexity of
terrains, and is based on the relationship between what
on the opposite side of the valley can be seen by guards
at v0(x) or v1(x). It is possible for v0(x) to see things
v1(x) cannot because v1(x) is ‘too low’. Similarly, it
is possible for v1(x) to see things v0(x) cannot because
v0(x) is ‘too far to the left’. The details in Figure 10
will be explained shortly.

It is important to point out that the direction in
which a truth assignment is propagated is simply a
matter of perspective. We can think of the truth as-
signment as starting at the top and being propagated
downwards, as starting at the bottom and being prop-
agated upwards, or as starting in the middle and being
propagated both upwards and downwards.

Figure 9: A variable interaction. The inset detail is exaggerated to show how specific lines of sight interact. For
more detail see Figure 10.

vtop

x1

x2

x3

Figure 7: Another ‘truth assignment propagation ter-
rain’, now with three variables, still no propagation.

Variable gadget interaction A variable gadget only
interacts with other gadgets representing the same
variable. This interaction is shown coarsely in Figure
8. The necessary guard at vtop sees enough of the
first (i.e. top left) assignment gadget that the first
assignment gadget can be optimally guarded by n
guards corresponding to any truth assignment for the n
variables. This will be the output of the first assignment
gadget. After that, zig-zagging down the terrain, the

interactions of the variable gadgets are designed to
ensure that an assignment gadget can be guarded by
n guards if and only if it encodes a truth assignment
(its output) that matches the truth assignment encoded
in the assignment gadget above (its input). Finally,
a guard at vbottom is necessary and sufficient to guard
everything below the final assignment gadgets. Thus a
‘truth assignment propagation terrain’ (see, e.g., Figure
8) with k assignment gadgets propagating n variables
can be guarded with nk + 2 guards if and only if the
truth assignment is consistent; furthermore, this works
for any of the 2n possible truth assignments. This
count of nk + 2 only works for these truth assignment
propagation terrains because every assignment gadget
has a slot for each of the n variables so there are nk
total variable gadgets; this will not be true in general.

In the detail in Figure 10 the four points {d, d′, p, q}
are of particular interest. To guard d and d′ we
need at least one of {v0(x), v1(x)} and at least one of
{u0(x), u1(x)} in our guarding set. The gadgets are
configured such that, of these four potential guards,
only v0(x) and u1(x) see q, and only v1(x) and u0(x)
see p. Therefore the only pairs of guards that see
{d, d′, p, q} are {v0(x), u0(x)} and {v1(x), u1(x)}. These
pairs correspond to the variable x being set to false or
true respectively.

Special care is taken to ensure that guards in a
guarding set of size nk + 2 do not interfere with the
wrong gadgets. For each of the nk variable gadgets we
have points of type p and q (see Figure 10). vtop can see

vbottom

vtop

Figure 8: An assignment of three variables being prop-
agated using four reflectors. Note that in an actual ter-
rain used in our reduction, the top and bottom assign-
ment gadgets will have every variable slot empty except
for x1 and xn.

all such points in the first assignment gadget, but none
from any other assignment gadget. vbottom cannot see
any at all. The v0(x) and v1(x) type guards can only see
the appropriate points in their own variable gadget and
in the variable gadget below that their variable gadget
interacts with. The ‘lip’ on the gadget ensures v0(x)
and v1(x) cannot see any variable gadgets further down,
and they cannot see any higher points of type p and q
because those points sit in ‘dimples’.

Managing lines of sight For each pair of variable
gadgets that interact, two tweaking phases need to be
performed to ensure that important lines of sight either
exist or do not exist, as required; tweaking is done
by moving certain vertices vertically by small amounts.
The first phase is done for each gadget, starting at the
bottom of the terrain and proceeding upwards. Then
the second phase is done for each gadget, starting at
the bottom of the terrain and proceeding upwards. We
describe these phases in reference to the interaction
shown in Figure 10.

In the first phase, the two vertices to be adjusted
vertically are v1(x) and the lip vertex to the right of
v1(x). First v1(x) is adjusted so that the line of sight
from v0(x) through v1(x) hits the terrain on the opposite
side between u0(x) and p. After that, the lip vertex
to the right of v1(x) is adjusted so that the line of
sight from v1(x) passing through this lip vertex hits the
terrain on the opposite side below the opposite lip vertex

v0(x)
u0(x)

u1(x)

v1(x)

d d′

p

q

lip lip

Figure 10: Interaction of variable gadgets. v0(x) cannot
see p because the line of sight is blocked by v1(x). v1(x)
cannot see q because the line of sight is blocked by u1(x).
One internal guard is required for each gadget.

but above any variable gadget below.
In the second phase, the two vertices to be adjusted

vertically are p and q. p is adjusted so that the line
of sight from p through the adjacent lip vertex hits
the terrain on the opposite side below the opposite lip
vertex. q is then adjusted so the line of sight from q
through u1(x) hits the terrain on the opposite side on
the line segment (d, v0(x)). The line of sight passes just
over v1(x) and hits just below v0(x).

If the tweaking is done in this order, the tweaking
process will not disturb variable gadgets that have
already been tweaked. The other gadget types can be
tweaked similarly.

We reiterate our main point regarding these truth
assignment propagation terrains. Again, this only holds
for these demonstrative truth assignment propagation
terrains.

Observation 1. A truth assignment propagation ter-
rain with k assignment gadgets propagating n variables
can be guarded using nk+2 guards corresponding to any
consistent truth assignment. Any guarding set that does
not correspond to a consistent truth assignment requires
more guards.

Deletion gadgets In the truth assignment propaga-
tion terrains shown thus far, each variable has a lane in
the variable highway that spans every assignment gad-
get, from the top to the bottom. However, for our re-
duction we will need to be able to place ‘roadblocks’ to

manage the endpoints of each variable’s lane. To end
a lane, we use deletion gadgets. We need a downward
deletion gadget for the bottom endpoint of a lane and an
upward deletion gadget for the top endpoint of a lane.

Both downward and upward deletion gadgets are
essentially simplified variable gadgets. A downward
deletion gadget is actually just a flat region where a
variable gadget would be; in a sense it is a variable
gadget that has been simplified to a straight line (see
Figure 11). An upward deletion gadget is only slightly
more complicated; it requires a single guard that will
function similarly to vtop but only for a single lane (see
Figure 12).

v0(x)

v1(x)

d

lip

Figure 11: The bottom variable gadget in a variable lane
(left) interacts with a downward deletion gadget (right).
The downward deletion gadget is simply a flattened
region. v1(x) and the lip vertex are positioned so that
neither v0(x) nor v1(x) can see gadgets lower down the
terrain. One internal guard is required on the left side,
no internal guard is required on the right.

Observation 2. A truth assignment propagation ter-
rain with deletion gadgets with kv total variable gadgets
and kdel upward deletion gadgets can be guarded using
kv+kdel+2 guards corresponding to any consistent truth
assignment. Any guarding set that does not correspond
to a consistent truth assignment requires more guards.

4 Evaluating clauses

Our basic truth assignment propagation process from
Section 3 can be thought of as behaving in the following
way. A truth assignment for the variables is set in
one of the assignment gadgets (it does not matter

vdel(x)
u0(x)

u1(x)

d d′

p

q

lip lip

Figure 12: An upward deletion gadget (left) interacts
with the top variable gadget in a variable lane (right).
The upward deletion gadget is a simplified variable
gadget. vdel(x) can see both p and q and will be used to
guard the distinguished point d. The lip vertex near vdel

ensures that vdel cannot interact with variable gadgets
lower down the terrain. One internal guard is required
on the left side and one is required on the right.

which). Call this reflector the starting gadget. The
way the assignment gadgets interact ensures that, in
a minimum guarding set, this truth assignment is
propagated consistently both upwards and downwards
from the starting gadget.

With the starting gadget fixed, we can consider each
assignment gadget to have an input truth assignment
and an output truth assignment (though the starting
gadget has no input and the topmost and bottommost
assignment gadgets have no output). Each assignment
gadget above the starting gadget takes input from below
and sends its output upwards. Each assignment gadget
below the starting gadget takes input from above and
sends its output downwards. An assignment gadget can
be thought of as an identity gadget since, in a minimum
guarding set, its output is the same as its input.

When building TΦ we will also have a starting
gadget, and other gadgets will still have input and
output. However, we need more than just an identity
gadget. In this section we describe the types of gadgets
required to propagate a truth assignment that satisfies
Φ. The three gadget types in this section are:

1. Inversion gadget – in the variable lane for a
variable xi, this gadget switches the position of the
guards representing true and false assignments.

2. Upward clause gadget – for three variables
xi, xj , xk, with i < j < k and with xj the only
non-empty lane between xi and xk, asserts that the
clause (xi ∨ xj ∨ xk) is satisfied, otherwise at least
one extra guard is required. The xj lane must be
empty above this gadget.

3. Downward clause gadget – for three variables
xi, xj , xk, with i < j < k and with xj the only
non-empty lane between xi and xk, asserts that the
clause (xi ∨ xj ∨ xk) is satisfied, otherwise at least
one extra guard is required. The xj lane must be
empty below this gadget.

It should be clear from Sections 2 and 3 that these
gadgets are sufficient to complete our reduction from
PLANAR 3-SAT.

Gadget input and output Our reduction ensures
that in a guarding set of size f(Φ), guards can only
be on certain special types of internal vertices2:

1. vtop and vbottom

2. vertices of type vdel(x) in upward deletion gadgets

3. vertices of type v0(x), v1(x), u0(x), and u1(x)3 in
standard and modified4 variable gadgets

4. vertices of type u0(x), u1(x), w0(x) and w1(x) in
inversion gadgets.

The output of a gadget only has to be valid in a
guarding of size f(Φ), otherwise it is not necessarily
valid and all assumptions are allowed to fall apart since
a minimum guarding set must correspond to a truth
assignment satisfying Φ if and only if it has size f(Φ).
f(Φ) internal guards will still be necessary, but they will
not necessarily correspond to a consistent and satisfying
truth assignment if there are additional guards.

4.1 Gadget functions

Inversion gadget For a single variable, an inversion
gadget swaps the positions of guards representing the
true and false truth assignments. By default, in a
variable gadget the vertex v0(x) (representing false)
will be above the vertex v1(x) (representing true).
However, if in the lane for x there are an odd number
of inversion gadgets between the variable gadget in

2More precisely, in a guarding set of size f(Φ), any guard not
on one of these point types can be replaced by a guard on one of

these point types with no loss in visibility.
3In variable gadgets, vertices of type u0(x) and u1(x) are

actually also vertices of type v0(x) and v1(x).
4Modified variable gadgets are used in clause gadgets.

question and the start gadget, v1(x) will be above v0(x).
An inversion gadget replaces a single variable gadget in
the lane corresponding to the variable being inverted.

A standard variable gadget has two possible min-
imum guarding sets: {v0(x)} and {v1(x)} (see Figure
4). The special variable slot in an inversion gadget also
has two possible minimum guarding sets, though each
has two guards instead of just one. From each minimum
guarding set, however, only one guard affects the output
of the gadget. An inversion gadget is shown in Figure
13, with a detailed explanation in the caption. A larger
view is shown in Figure 14.

Upward clause gadget An upward clause gadget
takes as input (from below) a variable assignment
and outputs a variable assignment with one variable
removed. These gadgets are used to implement clauses
in the α sequence of PΦ. For three variables xi, xj , xk

that are adjacent5 in the input highway (i < j < k), the
gadget will delete the middle variable xj . The gadget
can be guarded with a minimum number of internal
guards if and only if the following two conditions hold:

1. Each variable in the input (except xj) must have
the same value in the output.

2. The clause (xi ∨ xj ∨ xk) is satisfied by the input.

Another way of saying that the clause (xi ∨ xj ∨ xk) is
satisfied by the input is to say that the input can include
xj only if (xi ∨ xk) evaluates to true in the input and
output.

In an upward clause gadget involving the variables
xi, xj , xk, the variable xj is deleted from the assignment.
This takes place in a single reflector, in which all
active variable slots except xj contain variable gadgets.
Assuming the clause being evaluated is (xi ∨ xj ∨ xk),
we explain what is put in the place of a variable gadget
for xj . The key is the special point qj . Of the ‘output’
points v0(xi), v1(xi), v0(xk) and v1(xk), only v1(xi) and
v0(xk) can see qj . Of the 6 ‘input’ points, only u1(xj)
can see qj . Since the variables xi and xk will have the
same output as input, this means that xj can be in
the input if and only if xi or xk is in the input. Thus a
minimum guarding of the gadget ensures that the clause
(xi ∨ xj ∨ xk) is satisfied.

Downward clause gadget A downward clause gadget
takes as input (from above) a variable assignment
and outputs a variable assignment with one variable
removed. These gadgets are used to implement clauses
in the β sequence of PΦ. For three variables xi, xj ,

5By adjacent we mean that there are no active lanes in the
input between xi and xj or between xj and xk.

u0(x)

u1(x)

p

q

w1(x)

w0(x)

r

s

t

Figure 14: Detail of inversion gadget. See Figure 13 for details of its interaction with variable gadgets above and
below it.

v0(x)

v1(x)

d

u0(x)

u1(x)

p
q

w1(x)

w0(x)

r
s

t

v′
1(x)

v′
0(x)

d

p′
q′

u0(x)

u1(x)

p
q

w1(x)

w0(x)

r
s

t

Figure 13: Inversion gadget detail. Input is shown
above and output is shown below, with the same in-
version gadget on the top right and bottom right.
There are only two minimum guarding sets that in-
clude exactly one of the input guards v0(x) and
v1(x). These sets are {v0(x), u0(x), w0(x), v′0(x)} and
{v1(x), u1(x), w1(x), v′1(x)}. Two internal guards are
required in the inversion gadget (i.e. in the range
[u1(x), u0(x)]), since r is not seen by anything outside
the range [u1(x), w0(x)] and s is not seen by anything
outside the range [w1(x), u0(x)]. t is not seen by any-
thing outside the range [w0(x), w1(x)]. Though it is
difficult to see, p is seen by v1(x) and w0(x) but not by
u1(x). q is seen by v0(x) and w1(x) but not by w0(x).
r is seen by u1(x) and w0(x). The two potential out-
put guards are u0(x) and u1(x). w0(x) and w1(x) are
useless outside this gadget. See Figure 14 for a closer
view.

qj

v0(xi)

v1(xi)

u1(xi)

u0(xi)

v0(xk)

v1(xk)

u1(xk)

u0(xk)

u1(xj)

u0(xj)

Figure 15: Upward clause gadget interaction. In every
reflector above this gadget the xj slot is empty. Each
of the 6 slots shown, except the middle left, requires
one internal guard. No extra guards are required iff the
clause (xi ∨ xj ∨ xk) is satisfied, since the only internal
guards that see qj are v1(xi), u1(xj), and v0(xk). Note
that, in the top left slot, the lip vertex has been lowered
so that v1(xi) can see qj . Also, qj has been adjusted so
that v0(xk) can see it. The two lines of sight relevant
to these adjustments are shown.

xk that are adjacent in the input highway, the gadget
will delete the middle variable xj . The gadget can be
guarded with a minimum number of internal guards if
and only if the following two conditions hold:

1. Each variable in the input (except xj) must have
the same value in the output.

2. The clause (xi ∨ xj ∨ xk) is satisfied by the input.

Another way of saying that the clause (xi ∨ xj ∨ xk) is
satisfied by the input is to say that the input can include
xj only if (xi ∨ xk) evaluates to true in the input and
output.

In a downward clause gadget involving the variables
xi, xj , xk, the variable xj is deleted from the assignment.
This takes place in a single reflector, in which all
active variable slots except xj contain variable gadgets.
Assuming the clause being evaluated is (xi ∨ xj ∨ xk),

v0(xj)

v1(xj)

qj

u1(xk)

u0(xk)

v0(xi)

v1(xi)

u1(xi)

u0(xi)

v0(xk)

v1(xk)

Figure 16: Downward clause gadget interaction. In
every reflector below this gadget the xj slot is empty.
Each of the 6 slots shown, except the middle right,
requires one internal guard. No extra guards are
required iff the clause (xi ∨ xj ∨ xk) is satisfied, since
the only internal guards that see qj are v1(xi), v0(xj),
and v0(xk). Note that, in the top left slot, the lip vertex
has been lowered so that v1(xi) can see qj . Also, qj has
been adjusted so that v0(xk) can see it. The two lines
of sight relevant to these adjustments are shown.

we explain what is put in the place of the variable
gadget for xj . The key is the special point qj . Of the
‘input’ points v0(xi), v1(xi), v0(xj), v1(xj), v0(xk) and
v1(xk), only v1(xi), v0(xj) and v0(xk) can see qj . Thus a
minimum guarding of the gadget ensures that the clause
(xi ∨ xj ∨ xk) is satisfied. All variables except xj will
have the same output as input.

5 Conclusions and future work

We have shown that terrain guarding is NP-hard. With
the PTAS for terrain guarding given by Gibson et al.
[9], this essentially resolves the approximability of the
problem. The biggest remaining question regarding the
complexity of terrain guarding is whether or not it is
fixed-parameter tractable.

Acknowledgements

The authors would like to thank Kasturi Varadarajan,
Bengt Nilsson, and Will Evans for their valuable com-
ments, discussions and suggestions.

References

[1] B. Ben-Moshe, M. Katz, and J. Mitchell. A Constant-
Factor Approximation Algorithm for Optimal 1.5D
Terrain Guarding. SIAM Journal on Computing, 36(6):
1631–1647, 2007.

[2] D. Z. Chen, V. Estivill-Castro, and J. Urrutia. Optimal
guarding of polygons and monotone chains. Canadian
Conference on Computational Geometry, 1995.

[3] K. L. Clarkson, K. Varadarajan. Improved Approxima-
tion Algorithms for Geometric Set Cover. Proc. 21st
ACM Symposium on Computational Geometry, 2005.

[4] E. D. Demaine and J. ORourke. Open problems: Open
problems from CCCG 2005. Proceedings of the 18th
Canadian Conference on Computational Geometry,
pages 75–80, 2006.

[5] A. Deshpande, T. Kim, E. D. Demaine, and
S. E. Sarma. A Pseudopolynomial Time O(log n)-
Approximation Algorithm for Art Gallery Problems.
WADS, 2007.

[6] S. Eidenbenz. Inapproximability Results for Guarding
Polygons without Holes. Lecture Notes in Computer
Science, vol. 1533 (ISAAC’98), 427–436, 1998.

[7] K. Elbassioni, E. Krohn, D. Matijevic, J. Mestre,
D. Severdija. Improved Approximations for Guarding
1.5-Dimensional Terrains. Symposium on Theoretical
Aspects of Computer Science, 2009.

[8] S. Ghosh. Approximation algorithms for art gallery
problems. Proc. Canadian Information Processing So-
ciety Congress, 1987.

[9] M. Gibson, G. Kanade, E. Krohn, K. Varadarajan.
An Approximation Scheme for Terrain Guarding. AP-
PROX, 2009.

[10] J. Hopcroft and R. Tarjan. Efficient planarity testing.
J. ACM, 21(4): 549–568, 1974.

[11] J. King. A 4-Approximation Algorithm for Guarding
1.5-Dimensional Terrains. Lecture Notes in Computer
Science (3887), 629–640, 2006.

[12] D. E. Knuth and A. Raghunathan. The problem of
compatible representatives. SIAM J. Discret. Math.,
5(3): 422–427, 1992.

[13] D. Lee and A. Lin. Computational complexity of art
gallery problems. IEEE Trans. Inform. Theory, vol. 32,
276–282, 1986.

[14] D. Lichtenstein. Planar Formulae and their uses, SIAM
Journal on Computing, 11(2): 329–343, 1982.

[15] K. Mehlhorn and P. Mutzel. On the embedding phase
of the Hopcroft and Tarjan planarity testing algorithm.
Algorithmica, 16(2): 233–242, 1996.

[16] W. Mulzer and G. Rote. Minimum-weight triangulation
is NP-hard. J. ACM, 55(2): 1–29, 2008.

[17] B. Nilsson. Approximate guarding of monotone and
rectilinear polygons. Proceedings of ICALP 2005, 1362–
1373, 2005.

