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Abstract

Conductance is a measure of a Markov chain that quantifies its
tendency to circulate around its states. A Markov chain with low con-
ductance will tend to get ‘stuck’ in a subset of its states whereas one
with high conductance will jump around its state space more freely.
The mixing time of a Markov chain is the number of steps required for
the chain to approach its stationary distribution. There is an inverse
correlation between conductance and mixing time. Rapidly mixing
Markov chains have very powerful applications, most notably in ap-
proximation schemes. It is therefore desirable to prove certain Markov
chains to be rapidly mixing, and bounds involving conductance can
help us do that. This survey covers many useful bounds involving con-
ductance and gives several specific examples of applications of rapidly
mixing Markov chains.



1 Introduction

In this survey we discuss the conductance of Markov chains and its relation-
ship to rapid mixing. The conductance of a Markov chain is a scalar measure
of the tendency of a Markov chain to move out of a subset of states. The
mixing time of a Markov chain is the number of steps the Markov chain must
make before its probability distribution reaches the stationary distribution
(also commonly referred to as the steady-state distribution). Intuitively, high
conductance in a Markov chain would imply that the chain has a relatively
low mixing time, i.e. it is rapidly mixing. There are certain combinatorial
tasks that can be computed more easily given a certain Markov chain at
its stationary distribution. This makes rapidly mixing Markov chains use-
ful combinatorial tools and gives motivation for proving that certain chains
are rapidly mixing. Many of the early results in the field of rapidly mixing
Markov chains are due to Aldous in the early to mid 80’s [Ald82], [Ald83].

At this point we will introduce the notation used in this survey. We will
use V to denote the set of states of a Markov chain. We also have the
transition matrix P = {pij}i,j∈V of a Markov chain such that the probability
of transition from state i to state j is equal to pij.

We only consider ergodic Markov chains for a reason that is clear given
the definition of ergodicity.

Ergodicity Theorem A Markov chain is ergodic if and only if there exists
a distribution π such that πP = π and, for any distribution τ ,

lim
n→∞ τP n = π.

In other words, a Markov chain is ergodic if and only if there is a stationary
distribution that will always be reached eventually. Note that a Markov chain
at its stationary distribution will never achieve any other distribution. Also
note that the stationary distribution of any ergodic Markov chain is unique.
We can denote the smallest value in π as π0. In an ergodic Markov chain,
π0 > 0.
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We also only consider Markov chains that are time-reversible. A Markov
chain is time-reversible if and only if

πipij = πjpji, ∀i, j ∈ V.

In other words, in a time-reversible Markov chain at its stationary distribu-
tion, the probability of the next transition being from state i to state j is the
same as the probability of the next transition being from state j to state i.
We will call this probability Qij. Here we will also define the ergodic flow of
two subsets of vertices S1, S2 :

Q(S1, S2) =
∑

i∈S1,j∈S2

Qij .

This is the probability that, in a time-reversible Markov chain at its station-
ary distribution, the next transition is from an element in S1 to an element
in S2.

We can consider a time-reversible ergodic Markov chain in terms of its
underlying graph G, a complete directed weighted graph including a loop
from each vertex to itself. Each vertex in G corresponds to a state in the
Markov chain and each edge eij has weight wij = Qij . This is a very useful
representation of a time-reversible ergodic Markov chain, as it allows us to
utilise graph theoretic techniques and ideas. For example, Q(S1, S2) can
intuitively be defined as the weight of the coboundary of S1 and S2.

Now we can define the conductance of a proper subset of states of a Markov
chain. The conductance Φ of a subset S of states in a Markov chain is

Φ(S) =
Q(S, S̄)

πS
,

where S̄ is equal to V −S and π(S) is the probability that, at the stationary
distribution, the Markov chain will be at some state in S.

The conductance of a Markov chain is defined as the minimum conductance
over all subsets S with πS ≤ 1/2, i.e.
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Φ = min
S⊂V, πS≤1/2

Φ(S)

= min
S⊂V, πS≤1/2

Q(S, S̄)

πS
.

It is this value Φ that has been used to bound the mixing time of Markov
chains. The motivation for giving bounds (especially upper bounds) on the
mixing time of a Markov chain is to determine how efficiently a Markov chain
can be prepared for use as a tool for solving other problems. If a Markov
chain’s mixing time is too great, it is likely that a problem can be solved
more efficiently without using the chain as a tool.

2 Mixing Times

As stated before, the mixing time of a Markov chain is the number of steps
the Markov chain must take before its state distribution reaches its station-
ary distribution. However, this may not always be such a useful definition.
Many Markov chains will asymptotically approach the stationary distribu-
tion without actually reaching it in a finite number of steps, let alone a small
number of steps. Sometimes it is acceptable for the distribution to be sim-
ply close enough to the stationary distribution. Therefore it is sometimes
useful to define the mixing time of a Markov chain as the number of steps
required in order for the Markov chain to come close enough to its stationary
distribution.

Jerrum and Sinclair [JS88] define the relative pointwise distance after t
steps by

∆(t) = max
i,j∈V


 |p(t)

ij − πj |
πj


 .

where p
(t)
ij is the t-step transition probability from i to j, equal to [P t]ij .

∆(t) therefore gives the largest relative difference between the probability
of being at state j after t steps and the probability of being at state j in
the stationary distribution π, maximised over initial states i. ∆(t) is a very
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useful measure of the distance from the stationary distribution. In particular,
giving an upper bound for ∆(t) can demonstrate that a Markov chain mixes
fast enough for certain purposes.

Sinclair [Sin92] formally defines a related rate of convergence

τi(ε) = min{t : ∀ t′, t′ ≥ t → ∆i(t
′) ≤ ε}

where a subscript i denotes that i is the initial state. The more general and
useful rate of convergence τ is then defined as

τ = max
i

τi(1/4)

where the 1/4 is somewhat arbitrary and could really be any sufficiently small
constant. Essentially, τ is the number of steps required to get ‘close enough’
to the stationary distribution.

Another way to get around the possibly infinite number of steps required
to reach the exact stationary distribution is by using a nondeterministic
stopping rule. A stopping rule is a rule that observes the walk on a Markov
chain and, at each step, decides whether or not to stop the walk based on the
walk so far. Stopping rules can make probabilistic decisions and are therefore
very powerful tools. Usually the random stopping time of a stopping rule is
denoted by Γ and the distribution of the final state is denoted by σΓ. Ideally,
the expected stopping time E[Γ] is small. Here we provide an example of
a stopping rule for stopping at the stationary distribution π, assuming π is
known: stop at a state i the first time it is visited with probability πi/(1−πS)
where S is the set of states (excluding i) that have been visited; do not stop at
a state that has been previously visited. With this fairly simple rule, we are
guaranteed to stop in the distribution π. Unfortunately, this stopping rule is
not very efficient and would therefore never be used in practice. Moreover,
we do not always know the value of π before we begin the walk on the
Markov chain. Sometimes we don’t even know the transition probabilities.
The task of finding efficient stopping rules for particular graphs is a large
area in Markov chain analysis. Some efficient rules are discussed by Lovász
and Winkler in [LW95].
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The hitting time from two state distributions σ and τ of a Markov chain is
the minimum expected stopping time over all stopping rules that, beginning
at σ, stop in the exact distribution of τ . In other words, it is the expected
number of steps that the optimal stopping rule takes to move from σ to τ .
The hitting time from σ to τ is denoted H(σ, τ). The mixing time H of a
Markov chain is defined as

H = max
σ

H(σ, π).

This ‘improved’ definition of mixing time that utilises stopping rules is much
better than the more basic definition that it is the number of steps required
to reach the stationary distribution. In a way, it is really the same definition
with the addition that we can use stopping rules as ‘shortcuts’ to reach the
stationary distribution.

The term ‘rapidly mixing’ must now be defined more formally. First of all,
to be considered rapidly mixing, a Markov chain must approach its stationary
distribution rapidly regardless of the initial state distribution. This is evident
in the definitions of both relative pointwise distance (∆(t)) and mixing time
(H) in that they are maximised over all initial state distributions. ‘Rapidly’
means in a number of steps polynomial in the input size. This does not sound
so rapid until you consider that the number of states can be (and typically
is) exponential in the input size. Therefore, a rapidly mixing Markov chain
typically approaches its stationary distribution after visiting only a small
fraction of its states. Consider, for example, a Markov chain for which every
entry in the matrix P is the same. This chain is rapidly mixing and will
reach its stationary distribution after only one step, at which point it will
have visited at most two states.

3 Conductance and Bounds on Mixing Time

The simplest inequality that should be noted is

0 < Φ ≤ 1.

It is clear that 0 < Φ. To see that Φ ≤ 1, remember that, for our conductance-
minimising set S, π(S) ≤ 1/2. So we have
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Q(S, S̄) =
∑

i∈S,j∈S̄

πipij

=
∑
i∈S


πi

∑
j∈S̄

pij




≤ ∑
i∈S

πi

= π(S).

Our upper bound follows. These bounds are tight and can only be improved
if we know more about the Markov chain.

There is a relationship between the mixing rate of a Markov chain and its
eigenvalues, as well as between the conductance and the eigenvalues. The
eigenvectors and eigenvalues of a Markov chain are that of its transition
probability matrix P . By the definition of the stationary distribution vector
π, it is an eigenvector with associated eigenvalue 1. Since P is a doubly
stochastic matrix, all eigenvalues are less than or equal to 1. We denote
these eigenvalues λ1 = 1 ≥ λ2 ≥ λ3 ≥ . . . ≥ λN ≥ −1, where N is the
number of states in our Markov chain. As a consequence of dealing only
with ergodic Markov chains, we also know that λN > −1.

It is the eigenvalue with second greatest magnitude, i.e. max{λ2, |λN |},
that is of particular interest. In practice, there are ways to tinker with a
Markov chain to ensure that λ2 > |λN |, so in general we can just assume
that λ2 is the eigenvalue of interest. The greater the distance between λ2

and 1, the faster a Markov chain mixes. This distance is often referred to
as the spectral gap. The following inequality is due to Sinclair and Jerrum
[SJ89]:

∆(t) ≤ λt
2

π0
.

The second eigenvalue λ2 of a Markov chain is also guaranteed to satisfy
the following bound involving its conductance:

(1 − 2Φ) ≤ λ2 ≤ (1 − Φ2

2
).
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From these inequalities we can see that a large spectral gap leads to high
conductance which implies, as we will show later, faster mixing. This is in
accordance with the result we saw before that a second eigenvalue far from 1
leads to a small relative pointwise distance and therefore faster mixing. Alon
[Alo86] discusses bounds involving eigenvalues in much greater detail.

Combining and manipulating our bounds, we can obtain the following
characterisation of ∆(t) in terms of Φ:

(1 − 2Φ)t ≤ ∆(t) ≤ (1 − Φ2/2)t

π0
.

From these results, Lovász and Kannan [LK99] derive the bound on mixing
time of

H ≤ 32 log(1/π0)
1

Φ2
,

where they specifically attribute the factor of log(1/π0) to the starting con-
figuration and note that, if the initial distribution σ is close enough to π such
that maxi{σi/πi} ≤ 2, then H is in fact bounded by O(1/Φ2).

By our definition, a small conductance implies that there is a bottleneck
in the graph, i.e. a subset of states from which it is difficult to escape and
circulate around the chain. However, conductance is a measure regarding
the tightest bottleneck in the chain, and one bottleneck does not necessarily
imply slow mixing or bad circulation. Lovász and Kannan [LK99] show that
using the notion of average conductance of a Markov chain results in a better
bound for mixing time.

First we must define the conductance function

Φ(x) = min
S⊂V, πS≤x

Q(S, S̄)

πS
,

noting that, for x ≥ 1/2, Φ(x) = Φ. The mixing time of a Markov chain is
proven to satisfy the inequality

H ≤ 32
∫ 1/2

π0

dx

xΦ(x )2
.
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This is a better bound than the one proven by Jerrum and Sinclair. Instead
of using the conductance of the worst subset of states, it uses a weighted
average of worst conductances from different sized subsets.

A very strong tool for bounding Markov chain conductance introduced by
Jerrum and Sinclair in several papers including [JS88], [JS89], and [SJ89], is
the notion of canonical paths. A set of canonical paths is essentially a family
of simple paths in the underlying graph of a Markov chain that includes a
path between each pair of distinct states i and j. What we attempt to do is
build this family of paths Γ = γij such that no edge is ‘overloaded’, i.e. we
attempt to minimise the maximum edge loading ρ defined as

ρ = max
e

1

Q(e)

∑
γij�e

πiπj

where Q(e) is the weight of edge e, i.e. if u and v are the endpoints of e,
then Q(e) = Q(u, v) = wuv. Essentially, an overloaded edge is a bottleneck
in the Markov chain.

Sinclair [Sin92] proves the following lower bound on Φ:

Φ ≥ 1

2ρ

This bound holds for any choice of canonical paths, which means that finding
a decent set of canonical paths can improve our lower bound of Φ, thus
improving our upper bound on mixing time. This bound leads directly to
the bound

λ2 ≤ 1 − 1

8ρ2
.

Diaconis and Stroock [DS91] had previously obtained a better bound for λ2

by taking into account the lengths of the paths γij in their calculation of
ρ; Sinclair improved on their bound by changing the way path length was
considered:

λ2 ≤ 1 − 1

ρ̄
,

where, if |γij| is the edge length of path γij,

ρ̄ = max
e

1

Q(e)

∑
γij�e

πiπj |γij|.
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Sinclair offers yet more bounds that show an extremely close link between
the values Φ, λ2, and ρ:

ρ = O

(
log N

Φ

)

λ2 ≥ 1 − O

(
log N

ρ

)

Note that the log N factor is polynomial in the input size. As such, by
our definition of rapidly mixing, it cannot ‘make or break’ a rapidly mixing
Markov chain. A stronger result from the same paper is that

ρ ≤ 16τ

as it implies τ = Ω(ρ). Unfortunately, these three results are not particularly
positive in that they give a lower bound for the mixing time rather than an
upper bound.

4 Applications of Rapidly Mixing Markov Chains

Here we give three examples of applications of rapidly mixing Markov
chains: random sampling, approximating the permanent, and volume esti-
mation. Really the random sampling example is more like a stronger tool
that is bootstrapped from Markov chains, and is only efficient if the chains
are rapidly mixing. Random sampling is the key tool used in the examples
of approximating the permanent and volume estimation.

Random Sampling

In some cases it is desirable to take a random sample from a class of
combinatorial objects according to some distribution. Motivation for this
may be statistical analysis of a class of objects, for example. Often it is
possible to construct a Markov chain corresponding to the set of objects,
where each state represents an object and the stationary state distribution
π is exactly the distribution from which you wish to sample. Once such a
Markov chain has been devised, it is simply a matter of running the chain
until the state distribution approaches π. This is known as the Markov chain
Monte Carlo method.
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Propp and Wilson [PW96] provide several techniques for reducing the num-
ber of steps τ for which the Markov chain must run, even when τ is initially
unknown. Efficient stopping rules such as those discussed in [AD86] and
[LW95] can be applied to reduce the expected number of steps.

Approximating the Permanent

The permanent of a matrix is a measure somewhat like the determinant,
and only subtly different in definition. Of particular interest is the fact that
computing the number of perfect matchings in a bipartite graph is equivalent
to computing the permanent of that graph’s 0-1 matrix, a type of adjacency
matrix particular to bipartite graphs. Unfortunately, unlike the determinant,
the permanent of a matrix is very difficult to compute.

Rapidly mixing Markov chains can be used to approximate the permanent.
In fact, this technique is the only known method of obtaining a fully polyno-
mial randomised approximation scheme (fpras) for this problem. There are
other problems for which the same is true. The approximation of the perma-
nent is due to Jerrum and Sinclair [JS88], [JS89]. The technique first reduces
the approximation of the permanent to uniform random sampling from all
the perfect matchings of the graph. They then proceed to construct a near-
uniform generator for perfect matchings using the Markov chain Monte Carlo
method.

Volume Estimation

Computing the volume of a convex n-dimensional body K is an extremely
difficult task. For any fixed n it can be done in polynomial time, but the time
grows extremely fast with regard to n. It is not even easy to approximate
the volume. The only known approximation scheme that is polynomial in
both n and 1/ε, where ε is the maximum acceptable error, comes from the
Markov chain Monte Carlo technique.

Dyer, Frieze, and Kannan [DFK91] give an approximation algorithm that
runs in O(n19) time. Kannan, Lovász, and Simonovits [KLS97] give a much
more efficient algorithm that runs in O(n5) time. Both algorithms use the
Markov chain Monte Carlo method to sample points likely to be within the
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body by randomly walking in the body, preferably near the perimeter. They
use an oracle that says whether each point is in the body or not, the output
of which helps determine the next move of the random walk.

5 Conclusion

As shown, rapidly mixing Markov chains can be extremely powerful al-
gorithmic tools. The Markov chain Monte Carlo method has been used to
develop extremely good approximation algorithms for problems that were
previously thought to be impossible to approximate quickly and accurately.

There are many known bounds for the mixing times of Markov chains.
Many of the best bounds involve the conductance of the Markov chain, a
measure of how well the chain circulates around its states. There are many
open problems in the field of rapidly mixing Markov chains, especially regard-
ing the mixing times of specific classes of chains. As more classes of Markov
chains are proven to be rapidly mixing, more approximation schemes based
on the Markov chain Monte Carlo method will be discovered. Finding tighter
bounds for the conductance of certain classes of graphs will continue to be a
key area of this ongoing research.
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