
BIOINFORMATICS Vol. 00 no. 00 2005
Pages 1–7

Neighbourhood Thresholding for Projection-Based Motif
Discovery
James King, Warren Cheung and Holger H. Hoos
University of British Columbia
Department of Computer Science
{king,wcheung,hoos}@cs.ubc.ca

ABSTRACT
The PROJECTION algorithm by Buhler and Tompa is one of the best
existing methods for solving hard motif discovery problems for monad
motifs of fixed length l. In this paper we introduce the AGGREGA-
TION algorithm, which like PROJECTION projects all l-mers from
the given input sequences into buckets, but uses a different scheme
for selecting buckets for subsequent refinement search. This new
neighbourhood-based thresholding scheme allows AGGREGATION
to discover motifs in biased background sequences that cannot be
found by PROJECTION. In other cases, AGGREGATION finds motifs
of the same quality as PROJECTION substantially more efficiently.

1 INTRODUCTION
Many important cellular processes involve the recognition of
short, conserved subsequences in genomic DNA. The problem of
discovering such motifs in a given set of DNA sequences is of
considerable interest, and many computational approaches for motif
discovery have been developed. In this work, we consider the
following well-known combinatorial formulation of this problem
due to Pevzner and Sze [5]:

The Planted (l, d)-Motif Problem: Let M be a fixed but
unknown nucleotide sequence (the motif consensus) of length
l. Suppose that M occurs once in each of t background
sequences of common length n, but that each occurrence of M
is corrupted by exactly d point substitutions in positions chosen
independently at random. Given the t sequences, recover the
motif occurrences and the consensus M .

When it was first introduced, the (15, 4) problem with t = 20,
l = 600 posed a substantial challenge to the best motif discovery
algorithms at the time. Since then, several algorithms have been
developed to solve this ‘Motif Challenge Problem’. These include
Pevzner and Sze’s WINNOWER and SP-STAR algorithms [5], as
well as the PROJECTION algorithm by Buhler and Tompa [1, 2],
which forms the basis for the work presented here, and the more
recent PatternBranching and ProfileBranching algorithms by Price
et al.[6]. It should be noted that, like earlier motif finding methods,
these algorithms are not restricted to the (l, d)-motif problem and
have been applied to biological data very successfully.

In this paper, we introduce a new algorithm, dubbed AGGREGA-
TION, that performs significantly better than PROJECTION on the
(l, d)-motif problem, particularly when the base distribution in the
background sequences is non-uniform. AGGREGATION hashes
the l-mers (subsequences of length l) from the given sequences into

buckets exactly as PROJECTION does; the key difference is that
AGGREGATION uses a different approach for selecting the buckets
on which a refinement search for the motif is performed. More
precisely, rather than selecting the buckets to be refined based solely
on the number of l-mers hashed into them, our new algorithm refines
each bucket whose neighbourhood contains a sufficiently large
number of l-mers. This reduces the number of buckets refined using
EM, which more than compensates for the additional complexity of
the selection scheme.

We show experimentally that AGGREGATION performs much
better than PROJECTION on problem instances in which the
base distribution is biased, and is therefore able to solve a wider
range of problem instances than PROJECTION can. AGGRE-
GATION also performs significantly faster than PROJECTION
while achieving slightly better solution quality, even when the
base distribution is uniform. This improvement is maintained for
variations of the challenge problem. We show that the improvements
are not restricted to synthetic challenge problems, but can also
be observed when AGGREGATION is applied to the sets of
biological sequences used by Buhler and Tompa [2]. We also show
that PatternBranching, which is generally faster than AGGREGA-
TION but does not achieve quite the same solution quality, is
actually slower than AGGREGATION when the distribution of the
background bases deviates significantly from uniform.

The remainder of the paper is structured as follows. In Section
2, we describe the AGGREGATION algorithm in detail and discuss
its properties. Empirical results are presented in Section 3. Section 4
contains conclusions and points out some directions for future work.

2 FROM PROJECTION TO AGGREGATION
The PROJECTION algorithm by Buhler and Tompa [1, 2] works
as follows. In the first phase (the projection phase) every l-mer
from the given set of sequences is hashed into a bucket uniquely
determined by k of its l positions. The k positions used for hashing
are determined uniformly at random at the start of the projection
phase. Two l-mers are hashed into the same bucket if, and only
if, they have the same bases in those k positions. l-mers are in
this way projected onto k-mers; the latter represent the fingerprints
associated with each bucket. In the second phase (the refinement
phase) each bucket containing more l-mers than the given threshold
is refined using the Expectation Maximisation (EM) algorithm [4],
where the threshold depends on input parameters l, d, n, and t. (For
further details of the PROJECTION algorithm, see [2].)

c© Oxford University Press 2005. 1

James King, Warren Cheung and Holger H. Hoos

The key idea underlying this procedure is that background l-mers
are essentially random noise that will be distributed roughly evenly
between the buckets. The mutated occurrences of the motif will tend
to accumulate around the same bucket as the bucket in which the
motif consensus would be hashed (the planted bucket) as they will
often not be mutated in any of the k positions selected for projection.
PROJECTION is likely to find the motif consensus if it refines
the planted bucket. It also sometimes finds the motif consensus
by refining a bucket close to the planted bucket. By running the
above 2-phase procedure for a sufficient number of iterations, PRO-
JECTION will refine the planted bucket at least once with high
probability.

Typically, more than half of PROJECTION’s running time is
taken up by the EM algorithm used in refinement. For this reason,
one approach for improving the motif discovery algorithm is
reducing the number of buckets to which this refinement is applied.
However, care needs to be taken to ensure that the probability of
finding the correct motif is not decreased.

Our new AGGREGATION algorithm is based on the following
key observation: when hashing the l-mers into buckets as in PRO-
JECTION, many planted occurrences of the motif consensus will
not end up in the planted bucket BP (unless d is very small
compared to l), but rather in a bucket whose fingerprint is close
to that of BP . AGGREGATION therefore refines any bucket whose
neighbourhood contains more l-mers than some threshold. This
threshold is chosen to give a high probability of refining the planted
bucket while keeping the probability of refining other buckets low
(see Figure 1, which will be explained in more detail shortly). We
define the neighbourhood of a bucket B as the sum of all buckets
whose fingerprints are at Hamming distance exactly 1 from the
fingerprint of B. This neighbourhood could be extended beyond
Hamming distance 1, leading to a further increase in the probability
of a planted occurrence falling into the neighbourhood of the
planted bucket, but this would make our threshold tests prohibitively
expensive, and would also increase the sensitivity of the algorithm
to variations in the background distribution.

Another improvement used when solving synthetic motif
discovery instances is a more sensitive scoring mechanism. PRO-
JECTION uses σ scores, a count of number of sequences in which
the motif has instances with at most d mutations, to rate the motifs
it recovers when solving synthetic problems. However, in cases
where many motifs are found, this simple scoring method cannot
distinguish spurious motifs from the true motif, assigning maximal
σ scores to both. AGGREGATION also uses σ scores to rate
the motifs it finds, but when two motifs have the same σ score,
it uses the likelihood ratio scores computed during refinement to
distinguish between spurious motifs and the planted motif. The
likelihood ratio of a motif is essentially a measure of how different
a motif is from the background distribution (see [2] for details).
Spurious motifs will generally be more similar to the background
distribution (i.e. will have lower likelihood ratios) than the planted
motif, so this tie breaking works very well in practice.

An analysis of the expected probabilities of refining the planted
bucket and any other bucket, respectively, provides a good basis
for choosing good threshold parameters for AGGREGATION as
well as for comparing AGGREGATION with PROJECTION. These
probabilities can be approximated using the simplifying assumption
that background l-mers are independently distributed. From these
values, the expected number of buckets refined and the number

26 27 28 29 30 31 32
0

500

1000

Expected total number of buckets to be refined

Refinement threshold (s)

B
uc

ke
ts

 r
ef

in
ed

26 27 28 29 30 31 32
0

100

Number of iterations (m) required for 95% confidence

Refinement threshold (s)

It
er

at
io

ns
 r

eq
ui

re
d

(m
)

Fig. 1. Expected total number of buckets refined and iterations required by
AGGREGATION to reach 95% confidence for varying refinement threshold.
A good threshold keeps both of these values low; in this example, 28, 29, and
30 would make good thresholds. These curves are based on approximations
of tail probabilities of the planted bucket (and other buckets) containing
enough l-mers to be sent to refinement. These values are for l = 15, d = 4,
n = 600, t = 20.

0 50 100 150 200 250 300 350
0

1000

2000

3000

4000

5000

Number of iterations required for 95% confidence

E
xp

ec
te

d
to

ta
l b

uc
ke

ts
 to

 b
e

re
fi

ne
d

Using PROJECTION
Using AGGREGATION

s=5

s=4

s=30
s=32

s=28

s=26

s=24

s=22

Fig. 2. Theoretical comparison of PROJECTION and AGGREGATION
with varying refinement thresholds. These values are for l = 15, d = 4,
k = 7, n = 600, t = 20.

of iterations required to achieve a 95% probability of refining the
planted bucket can be determined; Figure 1 shows these measures
for AGGREGATION as they vary with the refinement threshold.
Not surprisingly, when choosing a good threshold we face a tradeoff
— a threshold that is too low will send too many spurious buckets
to refinement, whereas a threshold that is too high will cause the
algorithm to require too many iterations before the planted bucket is
refined.

The same analysis can be carried out for PROJECTION; Figure 2
shows for both algorithms the expected number of iterations needed
to reach 95% probability that the planted bucket is refined vs. the
total number of buckets refined as the refinement threshold is varied.
As can be seen clearly from the figure, AGGREGATION offers a
much finer level of control over this tradeoff than PROJECTION.

2

Neighbourhood Thresholding for Projection-Based Motif Discovery

Furthermore, when running both algorithms for the same number
of iterations, AGGREGATION can achieve 95% confidence after
refining less than half as many buckets as PROJECTION.

Because of the simplifying assumptions underlying our analysis
and the fact that AGGREGATION incurs more overhead when
selecting the buckets to be refined in each iteration, these analytical
results, while encouraging, are by no means any proof that AGGRE-
GATION is more efficient than PROJECTION. However, as we
will see in the following section, experimental results confirm the
performance advantage of AGGREGATION over PROJECTION.

3 EXPERIMENTAL RESULTS
To evaluate the performance of AGGREGATION vs. PROJEC-
TION on synthetic instances of the (l, d)-motif problem, we use
two measures: the performance coefficient and the expected solution
time. The performance coefficient is a measure of how accurately
the planted motif is recovered. It is defined as |K ∩ P |/|K ∪
P |, where K is the set of l · t base positions in the t planted
motif instances, and P is the set of l · t base positions in the
motif instances predicted by the algorithm [5]. The performance
coefficient therefore quantifies the amount of overlap between
the predicted motif and the actual motif. Expected solution time
captures the time required by the algorithm to recover a solution to
the given problem instance, i.e. an l-mer of which instances with at
most d mutations exist in all t given sequences; it can be estimated
from the empirical success probability of the algorithm, which is
calculated as the frequency of iterations in which a solution was
found and is measured over a large number of iterations. Note that a
solution can be different from the actual planted motif, as long as it
is as well preserved as the planted motif. This notion of solution has
been previously used in the literature [3], as the planted motif cannot
be discerned from a spurious motif with any certainty. For the
experiments on biological data, we directly compare the solutions
found by AGGREGATION to the results obtained by Buhler and
Tompa [2] on the same data.

All empirical results were obtaind on a PC with dual 2.0 GHz
Pentium Xeon processors with 512 KB cache (only one these
processors was used for the experiments) and 1 GB RAM, running
Redhat Linux 9 unless otherwise stated. AGGREGATION was
implemented by modifying the source code for PROJECTION
obtained from Jeremy Buhler as described in Section 2.

3.1 Results on Synthetic Challenge Problems
We compared the performance of AGGREGATION and PROJEC-
TION on randomly generated instances of the (l, d)-motif problem
that have been identified as particularly challenging in previous
work [2]. For PROJECTION, we used the same parameters (k =
7, s = 4) as Buhler and Tompa [2], and the parameters for AG-
GREGATION were set to (k = 7, s = 28). To ensure that
both algorithms were given comparable amounts of CPU time,
the number of iterations, m, for AGGREGATION was set to
twice the value of m used by PROJECTION; this reflects the fact
that AGGREGATION performs substantially fewer refinements per
iteration. (For actual runtimes, see Table 1.)

For each of the (l, d) combinations, 100 randomly generated
sets of input sequences (t = 20, n = 600) were generated (as in
[2]), and PROJECTION and AGGREGATION were both run once
on each of these sequences. We measured mean performance and

Table 1. Runtime for PROJECTION vs. AGGREGATION on
synthetic challenge problems, measured in CPU seconds. The data
shown are the mean of the runtimes over m iterations and the
respective 95% confidence interval.

l d PROJ. AGGR. PROJECTION AGGREGATION
m m Runtime Runtime

9 2 1483 2966 1896± 15 1730± 50
11 3 2443 4886 3223± 18 2800± 80
13 4 4178 8356 5550± 20 4570± 120
14 4 647 1294 704± 2 584± 14
15 4 172 344 179.9± 0.7 157± 4
16 5 1292 2584 1683± 5 1420± 30
18 6 2217 4434 2432± 6 1940± 40

Table 2. Mean performance coefficient of PROJECTION vs. AG-
GREGATION on synthetic challenge instances.

PROJECTION AGGREGATION PROJ. AGGR.
l d Perf. Coeff. Perf. Coeff. m m

9 2 0.08± 0.03 0.16± 0.05 2966 1483
11 3 0.04± 0.02 0.08± 0.03 4886 2443
13 4 0.05± 0.03 0.05± 0.02 8356 4178
14 4 0.74± 0.04 0.78± 0.03 1294 647
15 4 0.93± 0.02 0.93± 0.02 344 172
16 5 0.59± 0.08 0.72± 0.06 2584 1292
18 6 0.68± 0.07 0.70± 0.07 4434 2217

Table 3. Mean solution time of PROJECTION vs. AGGREGATION
on synthetic challenge instances.

PROJECTION AGGREGATION Soln. Time Ratio
l d Mean Solution Mean Solution PROJECTION :

Time [CPU sec] Time [CPU sec] AGGREGATION

9 2 23± 9 5± 1.6 4.6± 2.4
11 3 57± 17 20± 6 2.9± 1.2
13 4 280± 120 97± 53 2.9± 2.0
14 4 100± 20 38± 8 2.7± 0.8
15 4 6.2± 0.5 2.5± 0.3 2.5± 0.3
16 5 410± 140 160± 60 2.5± 1.2
18 6 1100± 300 460± 120 2.4± 0.9

also report 95% confidence intervals over the instances from the
respective test sets.

As seen in Tables 2 and 3, AGGREGATION reaches the same or
better performance coefficients than PROJECTION while requiring
less than half the expected solution time. We also assessed the
quality of the AGGREGATION thresholding process by comparing
the number of refinements which yielded the planted motif to
the total number of refinements. The data shown in Table 4
indicates that the primary performance gain in AGGREGATION

3

James King, Warren Cheung and Holger H. Hoos

is due to the significant reduction in unnecessary refinements. The
ratios correspond directly to those in Table 3, as the bulk of the
computation time is spent performing refinement.

3.2 Results for Biased GC Content
Since the base distribution in real DNA sequences is frequently
non-uniform, it is important that motif finding algorithms perform
well when the background sequences have non-uniform base
distributions. Like Buhler and Tompa [2], we consider input
sequences where the background G + C fraction is below 50%.
For each of our synthetic input sequences, each background base
is chosen randomly, with Pr[G] = Pr[C], Pr[A] = Pr[T], and
Pr[G] + Pr[C] = 1 − Pr[A] − Pr[T] = G + C fraction. By
symmetry, the results apply for G + C fractions above 50%, as
well as for all other cases with pairwise equal base frequencies.
The planted motif itself remains randomly generated with all bases
equally likely.

Moving the G + C fraction away from 50% skews the base
distribution of background l-mers compared to the base distribution
in the planted motif. When determining whether a bucket should
be sent to refinement, both AGGREGATION and PROJECTION
take into account the expected number of background l-mers in
that bucket based on its fingerprint by using a higher threshold for
buckets that expect more background l-mers. However, because
threshold values are integers and AGGREGATION uses higher
thresholds than PROJECTION it can adjust the threshold more
subtly based on the fingerprint of the bucket being inspected and
is hence able to solve this type of problem more effectively.

Buhler and Tompa [2] state that the performance of PROJEC-
TION on sequences with biased base distribution is limited by the
increasing number of spurious motifs “as good as the planted motif.”
This is true for PROJECTION, but it is not true for AGGREGA-
TION. While these spurious motifs are often as well preserved as
the planted motif, i.e. they often appear in all of the input sequences,
they are seldom as statistically significant as the planted motif.
Since the base distribution of the planted motif remains uniform
(as is common in nature), it ‘sticks out’ from biased background
sequences more than spurious motifs do and is therefore discernable
from spurious motifs by its greater likelihood ratio, providing it can
be found at all.

Our experimental results for variations of the (15, 4) challenge
instance clearly indicate that for skewed G + C background
distributions, the performance advantage of AGGREGATION over
PROJECTION increases (see Figure 3 and Table 5). Even stronger
results were obtained for (16, 5) instances, where for all background
distributions including the uniform distribution, AGGREGATION
consistently reaches higher performance coefficients than PROJEC-
TION given the same amount of CPU time (see Figure 4). The
same is true for other difficult (l, d) combinations (see Figure 6).
Furthermore, qualitatively similar performance differences arise for
non-uniform background distributions with a single-base bias (see
Table 7).

3.3 Other Variations of the Challenge Problem
We evaluated the performance of AGGREGATION on two other
variations of the previously studied challenge problems: problem
instances with longer background sequences and problem instances
in which the motif is planted in fewer than t input sequences.
For each of these experiments, we generated several sets of 50

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 10 20 30 40 50 60

P
er

fo
rm

an
ce

 C
oe

ffi
ci

en
t

Time (CPU seconds)

Aggregation vs Projection (15-4) GC 0.5

Using PROJECTION
Using AGGREGATION

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80 100 120 140 160 180 200

P
er

fo
rm

an
ce

 C
oe

ffi
ci

en
t

Time (CPU seconds)

Aggregation vs Projection (15-4) GC 0.35

Using PROJECTION
Using AGGREGATION

Fig. 3. Mean performance coefficient for PROJECTION vs. AGGREGA-
TION for (l, d) = (15, 4), t = 20, n = 600 with background G+C fraction
50% (top pane) and 35% (bottom pane).

Table 6. Mean performance coefficient for GC = 0.35 of PROJECTION vs. AG-
GREGATION on 50 randomly generated synthetic challenge instances for
difficult (l, d) combinations.

l d PROJECTION AGGREGATION PROJ. Time AGGR. Time
Perf. Coeff. Perf. Coeff. [CPU sec] [CPU sec]

9 2 0.06± 0.06 0.28± 0.10 466 434
11 3 0.01± 0.00 0.19± 0.09 471 446
13 4 0.02± 0.02 0.18± 0.09 454 431
14 4 0.46± 0.13 0.75± 0.10 437 431
16 5 0.34± 0.12 0.70± 0.10 426 427
18 6 0.37± 0.13 0.76± 0.10 474 407

These tests were run on the same machine as all others, but under SUSE Linux 9.1.

problem instances each and ran AGGREGATION and PROJEC-
TION on every instance from these sets. Unless otherwise stated, the
instances were generated using the following parameters: (l, d) =
(15, 4), n = 600 and t = 20.

Varying background sequence length It is natural to apply AG-
GREGATION to input sequences of length greater than n = 600.
As n increases, the number of noisy l-mers increases. This not
only means that the signal of the planted motif is weaker relative
to the noise, but also that spurious motifs are more likely to occur.
Because the increase in noise makes the signal harder to detect, both
PROJECTION and AGGREGATION recover motifs more slowly.

4

Neighbourhood Thresholding for Projection-Based Motif Discovery

Table 4. Solutions per 106 refinements of PROJECTION vs. AGGREGATION on
synthetic challenge instances.

l d PROJECTION AGGREGATION Ratio of Successful Refinements
Solutions Solutions AGGREGATION : PROJECTION

9 2 500± 200 2500± 800 4.7± 2.5
11 3 220± 70 640± 190 2.9± 1.2
13 4 46± 19 130± 70 2.9± 1.9
14 4 100± 20 280± 60 2.7± 0.8
15 4 1640± 130 4200± 600 2.6± 0.4
16 5 31± 10 80± 30 2.6± 1.3
18 6 10± 3 25± 6 2.5± 0.9

Table 5. Mean solution time and performance coefficient for PROJECTION vs. AGGREGATION for (l, d) =
(15, 4), t = 20, n = 600 with varying G+C fraction in the background distribution.

G+C PROJECTION AGGREGATION Ratio of Times PROJECTION AGGREGATION
Fraction Mean Solution Mean Solution PROJECTION : Performance Performance

Time [CPU sec] Time [CPU sec] AGGREGATION Coefficient Coefficient

50% 6.2± 0.5 2.5± 0.3 2.5± 0.3 0.93± 0.02 0.93± 0.02
45% 8.3± 0.4 3.2± 0.2 2.6± 0.2 1.0± 0.0 1.0± 0.0
40% 11.0± 0.5 4.6± 0.3 2.4± 0.2 0.75± 0.01 0.76± 0.01
35% 12.7± 0.5 1.9± 0.1 6.8± 0.4 0.85± 0.06 0.91± 0.00
30% 7.8± 0.3 1.4± 0.0 5.6± 0.3 0.36± 0.14 1.0± 0.0
25% 5.5± 0.1 1.2± 0.0 4.4± 0.1 0.04± 0.06 0.24± 0.12

Table 7. Mean performance for PROJECTION vs. AGGREGATION for
(l, d) = (15, 4), t = 20, n = 600 with varying single base bias of the
background distribution (all other bases are generated with equal probability).

Single PROJECTION AGGREGATION
Base Performance Solution Time Performance Solution Time

Fraction Coefficient [CPU sec] Coefficient [CPU sec]

0.4 0.74± 0.11 36.3± 0.6 0.90± 0.06 31.0± 0.7
0.46 0.12± 0.09 33.4± 0.4 0.96± 0.04 27.8± 0.8
0.51 0.10± 0.08 30.0± 0.4 0.96± 0.02 29.3± 0.8
0.55 0.00± 0.00 31.4± 0.3 0.71± 0.13 29.4± 1.0
0.61 0.02± 0.04 32.7± 0.3 0.46± 0.14 31.8± 1.1

However, as can be seen in Table 8, AGGREGATION maintains its
speed advantage as n increases. The two algorithms achieved nearly
identical performance coefficients in these tests .

Varying number of planted instances When analysing real
biological data, the motif we are looking for may not be present
in every input sequence. Therefore we are interested in synthetic
cases where the motif is not planted in every input sequence. When
the motif is not planted in every sequence its signal is weaker;
this makes it more difficult to detect. Also, since we do not
ask for a motif that is present in every input sequence, spurious

Table 8. Mean solution time of PROJECTION vs. AGGREGATION for
(l, d) = (15, 4), t = 20 with uniform background distribution and varying
length of background sequences.

PROJECTION AGGREGATION Ratio of Times
n Mean Solution Time Mean Solution Time AGGREGATION :

[CPU sec] [CPU sec] PROJECTION

600 6.6± 1.0 2.6± 0.5 2.5± 0.6
800 27± 4 10± 2 2.6± 0.6

1000 82± 25 32± 12 2.6± 1.3
1200 250± 60 96± 23 2.6± 0.8
1400 600± 140 190± 60 3.2± 1.2
1600 1000± 200 420± 90 2.5± 0.8

motifs are more likely to occur. As when background sequences
are increased in length, both PROJECTION and AGGREGATION
recover motifs more slowly when the motif is planted in fewer input
sequences, but again, AGGREGATION maintains a significant
speed advantage (see Table 9) while achieving roughly the same
performance coefficient. Note that when the motif consensus is
planted in fewer than 12 of 20 sequences, both PROJECTION
and AGGREGATION recover spurious motifs very quickly because
they are so abundant.

5

James King, Warren Cheung and Holger H. Hoos

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 50 100 150 200 250 300 350 400

P
er

fo
rm

an
ce

 C
oe

ffi
ci

en
t

Time (CPU seconds)

Aggregation vs Projection (16-5) GC 0.5

Using PROJECTION
Using AGGREGATION

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 200 400 600 800 1000 1200 1400

P
er

fo
rm

an
ce

 C
oe

ffi
ci

en
t

Time (CPU seconds)

Aggregation vs Projection (16-5) GC 0.35

Using PROJECTION
Using AGGREGATION

Fig. 4. Mean performance coefficient for PROJECTION vs. AGGREGA-
TION for (l, d) = (16, 5), t = 20, n = 600 with background G+C fraction
50% (top pane) and 35% (bottom pane).

Table 9. Mean solution time of PROJECTION vs. AGGREGATION for
(l, d) = (15, 4), t = 20 and n = 600 with uniform background
distribution when the motif is planted in fewer than t input sequences.

PROJECTION AGGREGATION Ratio of Times
Plantings Mean Solution Mean Solution AGGREGATION :

Time [CPU sec] Time [CPU sec] PROJECTION

20 6.2± 0.5 2.5± 0.3 2.5± 0.3
18 11± 2 5.0± 1 2.1± 0.6
16 30± 6 14± 3 2.1± 0.7
14 110± 30 42± 15 2.6± 1.2
12 150± 60 110± 50 1.4± 0.9
10 4.5± 0.4 4.0± 0.4 1.4± 0.9

3.4 Results for Biological Data
To test AGGREGATION on more realistic motif discovery
problems, we evaluated its performance on the same biological data
used by Buhler and Tompa [1], which were kindly provided to us by
Jeremy Buhler.

The first biological data set contains orthologous eukariotic
promotor sequences from various organisms that occur upstream
of preproinsulin, dihydrofolate reductase (DHFR), metallothioneins
and c-fos genes and are known to contain specific transcription
factor binding sites. This set also contains seqeuences from S.

cerevisiae that are known to contain the ECB element as a common
promoter. The motifs in these data sets are very well preserved; the
challenge lies in the fact that the background sequences are very
long. We used parameters l = 20, d = 2, just as Buhler and Tompa
did, but we increased k from 7 to 13 to achieve a large spread in the
background l-mers.

AGGREGATION solved each of the problems in under 15 CPU
seconds on our reference machine and almost always discovered
the same motifs discovered as previously reported for PROJEC-
TION [1]. The one exception was the third motif discovered for
metallotionein, where AGGREGATION had a single point mutation
error in the reported motif consensus. In discovering the known
motifs, AGGREGATION refined only 10%–30% as many buckets
as PROJECTION.

The second biological test set consists of 20 C. elegans promoter
regions, each of length 1000, that contain the ‘X box’ motif [1].
This motif is somewhat harder to find, because it is not as well
preserved as those in the eukaryotic promoter sequences. The motifs
found by AGGREGATION precisely match those discovered by
PROJECTION; both algorithms recovered 19 of the 20 known
motif occurrences, and the 20th recovered occurrence had a higher
likelihood ratio than the previously known occurrence. Maintaining
its ability to select better starting points for refinement than PRO-
JECTION, AGGREGATION refined only 691 buckets compared to
2832 buckets refined by PROJECTION.

The final biological test set consists of prokaryotic ribosome
binding sites. These problem instances consist of thousands of short
DNA sequences (n = 20) taken from the upstream region of
the translation start sites of genes from a number of prokaryotic
organisms. The ribosome binding sites are very short subsequences
that have a complementarity to a section near the 3’-end of the
respective organism’s 16S rRNA. One of the challenges with this
data is that not all of the sequences contain a ribosome binding site
[2]. Furthermore, as is often the case in prokaryotic genomic DNA,
the sequences show highly skewed base distributions.

In our experiments we used the same parameters for PRO-
JECTION as Buhler and Tompa [2]. PROJECTION used fixed
thresholds determined by an equation in [2]. For AGGREGATION,
we used k = 5 and the same m values as for PROJECTION. Since
there are only 30 possible hashes with l = 6, k = 4, only 30
deterministic runs would be required for PROJECTION; likewise,
only 6 deterministic runs would be required for AGGREGATION.

The refinement thresholds for AGGREGATION were chosen in
a fairly ad hoc manner, since the parameters of the data varied
significantly. Standard AGGREGATION thresholds were used, then
raised or lowered until some but not many refinements were made.
AGGREGATION recovered a motif consistent with the 16S rRNA
and the highest z-scoring pentamer in all cases except for E. coli,
where the motif found by AGGREGATION had a higher likelihood
ratio (i.e. was more probabilistically significant) than the motif
recovered by PROJECTION, which was consistent with the 16S
rRNA and the highest z-scoring pentamer. On the other hand, unlike
PROJECTION, AGGREGATION found a site for H. influenzae that
fully agrees with the respective 16S rRNA sequence. Hence overall,
the quality of motifs recovered by AGGREGATION appears to be
as good as of those found by PROJECTION, but AGGREGATION
always refined fewer than 10% as many buckets.

AGGREGATION was far more efficient in all biological tests
while recovering motifs of the same quality. When PROJECTION

6

Neighbourhood Thresholding for Projection-Based Motif Discovery

consistently recovers the planted motif, AGGREGATION can only
outperform it in terms of speed. We therefore challenge molecular
biologists to suggest known (or suspected) motifs occurring in
nature that cannot be discovered by PROJECTION — we suspect
that AGGREGATION may be able to discover some of these.

4 CONCLUSIONS AND FUTURE WORK
We have developed an enhanced version of Buhler and Tompa’s
PROJECTION algorithm [1] for the motif discovery problem. This
modification, which we call AGGREGATION, typically runs more
than twice as fast as the original PROJECTION algorithm when
solving the challenge problem posed by Pevzner and Sze [5]. This
increase in speed is obtained without sacrificing accuracy. The AG-
GREGATION algorithm maintains its speed advantage in more
difficult variations of the challenge problem, such as when there are
more background l-mers and when the motif is not planted in every
input sequence.

More important than the speed increase, AGGREGATION
significantly outperforms PROJECTION on difficult problem
instances with biased base distribution in the background sequences.
AGGREGATION can, in fact, solve many of these instances that
PROJECTION cannot solve at all.

According to our experimental results, AGGREGATION also
achieves at least the same solution quality as PROJECTION on
biological data, while requiring substantially less runtime. Since
PROJECTION is still a state-of-the-art method for solving certain
hard motif discovery problems, we believe that AGGREGATION
represents an improvement in the state-of-the-art of solving such
problems, especially for problems in which the background base
distribution deviates significantly from uniform.

A different improvement of the PROJECTION algorithm has
been made by Raphael et al. [7]. Instead of using a completely
random projection for each iteration, they use ‘uniform projections’,
i.e. projections chosen to more uniformly cover the space of all
possible projections. This enables PROJECTION to achieve the
same success rate while running for 20-50 percent fewer iterations.
The projection improvement of Raphael et al. is disjoint from our
thresholding improvement; it is therefore natural to apply both
improvements at the same time. We predict that using AGGREGA-
TION with uniform projections will give all of the advantages of
AGGREGATION with an even greater increase in speed. We have
yet to implement and test this, though we intend to do so in the near
future.

It should be mentioned that the more recent PatternBranching
algorithm by Price et al. [6] appears to be able to find solutions to the
(15, 4) challenge problem substantially faster than PROJECTION
and AGGREGATION; however, this seems to come at the cost of
slightly reduced accuracy. Furthermore, it is not clear how well
this result extends to the more challenging variations of the (l, d)
problem studied here. We have conducted preliminary experiments
in which we compared the time required for PatternBranching
and AGGREGATION to reach given success probabilities and
found the following. For the (15, 4) challenge problem AGGRE-
GATION achieves over 90% success rate after 12 CPU seconds,
and 100% success rate after 18 CPU seconds on our reference
machine (compared to 17 seconds and 33 seconds for PRO-
JECTION, respectively). PatternBranching requires a mere 0.9
seconds to achieve a success rate just below 100%. Although

it is notably slower than PatternBranching, AGGREGATION can
trade increased execution time for increased accuracy, whereas
PatternBranching is limited by the number of l-mers in the input
sequences. Also, when the G+C content is decreased to 0.35, the
average runtime for PatternBranching rises to 93 CPU seconds for
an average success rate of 98%, whereas AGGREGATION achieves
the same success rate after 18 seconds (compared to 77 seconds for
PROJECTION).

Given the strengths of both methods, an obvious direction for
future work is to explore ways in which the approaches underlying
AGGREGATION and PatternBranching (or ProfileBranching [6])
can be combined into even more powerful motif discovery
algorithms. We made an initial attempt to incorporate PatternBranching’s
local search strategy into AGGREGATION by using it to replace the
EM refinement stage. However, this variant of AGGREGATION
does not appear to perform as well as AGGREGATION. Further
investigation will tell whether different combinations of AGGRE-
GATION and PatternBranching will achieve better performance.

Relative to other motif finding algorithms, AGGREGATION is
most successful at solving problems in which the background base
distribution deviates significantly from uniform. We are currently
investigating ways to improve the performance of AGGREGA-
TION as the background base distribution becomes more and more
extreme. We also intend to apply AGGREGATION to problems
arising in real biological data that were not solved by PROJECTION
or PatternBranching.

ACKNOWLEDGEMENTS
We thank Jeremy Buhler for useful comments, and for making
his PROJECTION source code and data publicly available. We
also thank Mohammed Alam and Juan Estrada for their valuable
contributions in the early stages of this project.

REFERENCES
[1]Jeremy Buhler and Martin Tompa. Finding motifs using random projections.

In Proceedings of the Fifth International Conference on Computational Biology
(RECOMB-01), pages 69–76, New York, April 22–25 2001. ACMPress.

[2]Jeremy Buhler and Martin Tompa. Finding motifs using random projections.
Journal of Computational Biology, 9(2):225–242, April 2002.

[3]U. Keich and P.A. Pevzner. Finding motifs in the twilight zone. Bioinformatics,
18(10):1374–81, Oct 2002.

[4]C. E. Lawrence and A. A. Reilly. An expectation maximization (EM) algorithm
for the identification and characterization of common sites in unaligned biopolymer
sequences. Proteins, 7:41–51, 1990.

[5]Pavel A. Pevzner and Sing-Hoi Sze. Combinatorial approaches to finding subtle
signals in DNA sequences. In Proceedings of the 8th International Conference on
Intelligent Systems for Molecular Biology (ISMB-00), pages 269–278, Menlo Park,
CA, August 16–23 2000. AAAI Press.

[6]Alkes Price, Sriram Ramabhadran, and Pavel Pevzner. Finding subtle motifs by
branching from sample strings. In Proceedings of the Second European Conference
on Computational Biology (ECCB-03), pages 69–76, September 2003.

[7]Benjamin Raphael, Lung-Tien Liu, and Varghese Varghese. A uniform projection
method for motif discovery in DNA sequences. IEEE/ACM Transactions on
Computational Biology and Bioinformatics, 1(2):91–94, April 2004.

7

