
A Survey of 3sum-Hard Problems

James King

king@cs.ubc.ca

December 20, 2004

1 Introduction

The 3sum problem is defined as follows: given a set S of n integers, do
there exist three elements {a, b, c} ∈ S such that a + b + c = 0? This is a
linear satisfiability problem. 3sum can be solved using a simple algorithm
with Θ(n2) runtime (sort S, then test 3-tuples intelligently) and it is widely
believed that Ω(n2) is the lower bound for the worst-case runtime of any
solution to the 3sum problem.

Gajentaan and Overmars [GO95] relate a number of problems in com-
putational geometry to the 3sum problem. They define a problem to be
‘3sum-hard’ if a constant number of 3sum instances can solve the problem
via a o(n2) reduction. In section 2 I discuss some of these problems and
demonstrate some of the reductions used to prove 3sum-hardness. In sec-
tion 3 I discuss lower bounds for the time complexity of the 3sum problem.
In section 4 I discuss related problems and in section 5 I discuss areas of
research where there seems to be potential for progress.

2 3sum-Hard Problems

In this section I discuss problems that have been proven to be 3sum-hard.
For some of the problems I mention I will include the actual reductions to
3sum. In terms of notation, I will use that of [GO95]. That is, for two
problems pr1 and pr2,

PR1 ≪f(n) PR2

1

means that every instance of pr1 of size n can be solved using a constant
number of instances of pr2, plus O(f(n)) additional time.

PR1 ==f(n) PR2

means that pr1 ≪f(n) pr2 and pr2 ≪f(n) pr1.

A problem pr is called 3sum-hard if and only if 3sum ≪f(n) pr, where
f(n) = o(n2).

There are too many 3sum-hard problems for me to mention all of them
here. This listing includes some of the more significant problems, as well as
some of the fundamental 3sum-hard problems discussed in the original paper
[GO95].

3sum’

Given three sets of integers A, B, and C such that |A|+|B|+|C| =
n, are there three numbers a ∈ A, b ∈ B, and c ∈ C such that
a + b = c?

3sum’ is a variation of the original 3sum problem. It is is equivalent in
difficulty to the original 3sum problem. The reductions are linear, so 3sum

==n 3sum’. The reductions consist of building new sets from the originals
and modifying them arithmetically and can be found in [GO95].

GeomBase

Given n points on horizontal lines given by y = 0, y = 1, and
y = 2, is there a non-horizontal line that goes through three
points?

GeomBase is so named because it is used as an intermediate point for
3sum hardness proofs of many problems in computational geometry, and
is essentially the base geometric form of the 3sum problem. 3sum’ ==n

GeomBase [GO95], and the reductions are quite simple. To reduce Geom-

Base to 3sum’, for each integer a ∈ A we create a point with coordinates
(a, 0). For each b ∈ B we create a point with coordinates (b, 2) and for each

2

c ∈ C we create a point with coordinates (c
2
, 1). Now we have an instance of

GeomBase. Clearly any non-horizontal line that goes through three points
corresponds to some a ∈ A, b ∈ B, c ∈ C such that (a + b)/2 = c/2, or
a+ b = c. Therefore we have 3sum’ ≪n GeomBase. We can essentially do
the same reduction in reverse to show that GeomBase ≪n 3sum’, so we
have 3sum’ ==n GeomBase.

3-Points-on-line

Given a set S of n points on the plane, are any three of them
colinear?

Consider the curve given by y = x3. Simple arithmetic tells us that three
points (a, a3), (b, b3), and (c, c3) are colinear if and only if a + b + c = 0.
Therefore reducing 3-Points-on-line to 3sum is simply a matter of pro-
jecting the numbers from our 3sum instance from the x-axis to the curve
y = x3. This tells us that 3sum ≪n3-Points-on-line [GO95].

Note that this problem is a special case of the problem of determining
whether a set of any type of two dimensional objects in the plane has three
elements that can be intersected by a single line. These problems, too, are
therefore 3sum-hard. Gomez et al. [GRT97] discuss the problem of finding,
removing, then replacing degeneracies in input so as to find exact solutions
to problems with degeneracies. This problem is 3sum-hard for many types
of degeneracies.

Minimum-area-triangle

Given a set S of n points on the plane, what is the area of the
smallest triangle formed by any three of these points?

This problem 3sum-hard because it is at least as hard as 3-Points-on-

line. Clearly a set S of points contains three colinear points if and only if
the area of the smallest triangle is 0.

3

Separator

Given a set S of n line segments, is there a line that divides S
into two nonempty subsets?

We can show that Separator is 3sum-hard by reducing it to GeomBase

[GO95]. For our reduction we need to create a set of line segments such
that gaps between our line segments correspond to points in our instance
of GeomBase. For each of our three original lines, we sort the points on
it then create line segments between adjacent points such that there is an
infinitessimally small gap at each point. After doing this for each line, we
can create a ‘cap’ of extra line segments at each end of our set such that
a line can only split the set of segments by passing through three of the
gaps that correspond to our original points (see [GO95] for details). Thus
Separator solves GeomBase after a O(n log n) time reduction. Therefore
3sum ≪n log n Separator, and Separator is 3sum-hard.

Strips-cover-box

Given a rectangle and n infinite strips (the space between two
parallel lines), does the union of the strips cover the rectangle?

3sum-hardness is proven in [GO95].

Triangles-cover-triangle

Given a set S of n triangles and a triangle t, does the union of
the triangles in S cover t?

3sum-hardness is proven via a reduction of two instances of Triangles-

cover-triangle to an instance of Strips-cover-box. The rectangle in
the original problem is split in half to turn the instance of Strips-cover-

box into two instances of ‘Strips-cover-triangle’. Each of these can in turn
be solved by an instance of Triangles-cover-triangle by cutting off the
irrelevant part of each strip to make a finite rectangle, then splitting each
rectangle in half to make two triangles. Strips-cover-box returns True if
and only if both instances of Triangles-cover-triangle return true. The

4

reduction is linear, so we have Strips-cover-box≪nTriangles-cover-

triangle.

Planar-motion-planning

Given a set of line segments in the plane and a line segment
robot, can the robot be moved from a start configuration to a
goal configuration using translation and rotation?

This is about as easy as motion planning problems get, so its 3sum-
hardness is quite significant. It can be proven by reducing it to GeomBase.
The reduction is very similar to the reduction of GeomBase to Separator;
we build the same construction of line segments, then build large ‘cages’ of
line segments both above our top line and below our bottom line. The start-
ing configuration is inside the upper cage and the goal configuration is inside
the lower cage. Our robot is long enough that, because of the cages, the
robot can move from the start configuration to the goal configuration only
by moving through a triplet of gaps that a line would fit through in Separa-

tor. Our reduction is the same as that of GeomBase to Separator, plus
constant time, so we have GeomBase ≪n log n Planar-motion-planning

and Planar-motion-planning is 3sum hard.

Dihedral-rotation

Given a polygonal chain of n edges in 3-space and a dihedral
rotation, does the rotation cause the chain to intersect itself?

The dihedral rotation problem arises especially when dealing with poly-
mers in physics. A dihedral rotation involves rotating half of the chain rigidly
around a given edge by a given angle. Soss et al. [SEO02] prove that pre-
processing a static chain of length n and answering n queries is a 3sum-hard
problem. They also prove that, for a dynamic chain in which a successful
query actually performs the rotation, performing n queries is 3sum-hard,
which suggests that no amount of preprocessing can yield sublinear query
time.

5

Soss et al. reduce Dihedral-rotation to 3sum’ by creating a polygonal
chain with ‘combs’ of sharp ‘teeth’: one comb with teeth corresponding to
elements in A and one with teeth corresponding to elements in C. In between
the combs is a ‘staircase’ created using the elements in B such that certain
rotations in the staircase are only legal if 3sum’ is not satisfied. See [SEO02]
for more details.

Polygon-containment

Given two polygons P and Q, can P be translated such that it
lies completely within Q?

3sum-hardness for this problem was proven by Barequet and Har-Peled
[BHP99]. In the same paper they offer proofs of 3sum-hardness for variations
of this problem, such as when the polygons must be convex but rotation is
allowed. Reductions for the proofs use Segments-contain-points as an
intermediate problem. That asks, given a set P of n real numbers and a set
Q of O(n) disjoint real number intervals, can the points be shifted by some
real number v such that, for every number p ∈ P , p + v lies in one of the
intervals in Q? This problem is 3sum-hard and some polygon containment
problems (including the ones given) can be reduced to it in o(n2) time. It
should be noted that some of these containment problems actually belong
to a harder complexity class [Bar96] of which every 3sum-hard problem is a
member.

3 Lower Bounds

Lower bounds have not yet been proven for general models of computation.
It is widely believed that Ω(n2) is a tight lower bound for the worst-case
runtime of any algorithm that solves 3sum, and that there is therefore a
similar bound for anything that solves a 3sum-hard problem.

3sum can certainly be solved in O(n2) time, and can even be solved faster
in special cases. If all of the numbers are integers in the range (−M, M) for
some M , 3sum’ can be solved in time O(n+M log M). Recall that the same
then applies to 3sum, since we know that 3sum ==n 3sum’. The technique
finds the bit vectors representing the three sets A, B, and C, then uses a fast

6

Fourier transform to calculate the integer vector representing the multiset
A + B. It then compares that vector to the bit vector of C.

This technique is due to Seidel and appears via a personal communication
with Erickson in [Eri95]. The problem is that it works only on a restricted
subset of 3sum instances. This is problematic not only in theory but also
in practice. Also, it uses a fairly powerful model of computation; this fact is
not extremely problematic in a practical sense, but does make the result less
significant theoretically.

Erickson [Eri95] provides a lower bound for any algorithm that solves every
instance of 3sum. The bound is the desired tight Ω(n2) bound, but only
works in a weak model of computation. This is the algebraic decision tree
model with restricted queries. All queries must be based on the sign of a
linear combination of three elements of the set. This model of computation
is sufficient for solving many 3sum-hard problems. However, some 3sum-
hard problems, such as Minimum-area-triangle, cannot be solved at all
using this model of computation. Minimum-area-triangle can be solved
in O(n2) time [CGL83], but all solutions to do so involve more complex
queries.

Erickson’s lower bounds rely on an adversarial argument. He proves that,
for any algorithm solving 3sum using the restricted model of computation,
there exists an input with Ω(n2) ‘critical 3-tuples’. Each critical 3-tuple is a
query such that, if the algorithm has not yet performed it, the adversary is in
a position where it can change the input such that the answers of previously
made queries do not change, but our critical query must be performed to
solve the 3sum instance correctly. Since Ω(n2) critical 3-tuples must be
tested, the algorithm must run in Ω(n2) time.

4 Related Problems

3sum is actually a linear satisfiability problem for an equation in 3 vari-
ables. Closely related is the more general linear satisfiability problem for an
equation in r variables for some r. Hernàndez Barrera [Bar96] investigates
the complexity class related to this problem for r = 4 rather than r = 3
(essentially the class of 4sum-hard problems). This class includes several

7

geometric problems, notably computing the Minkowski sum of two polygons
and Polygon-containment, as defined earlier.

Erickson’s lower bound for 3sum is a specific case of the more general
lower bound he proves. Under the same model of computation mentioned
before (though queries are now linear combinations of r elements), the linear
satisfyability problem for an equation in r variables cannot be solved faster
than Ω(ndr/2e). This bound is tight for all odd r and is within a logarithmic
factor for all even r.

5 Open Problems

Improved Lower Bounds

Though Erickson made significant progress towards proving a lower bound
of Ω(n2), it would be a significant achievement to extend his result to a more
general model of computation. This would prove a true lower bound of Ω(n2)
for all 3sum-hard problems. It is my belief that Erickson’s lower bound
will gradually be strengthened to include stronger and stronger models of
computation. This, however, is a well studied problem and progress towards
a better lower bound has been slow since Erickson’s result.

Seemingly 3sum-Hard Problems

There are still many problems that appear to be 3sum-hard, but for which
no lower bounds better than Ω(n log n) have been proven. Proving that these
problems are 3sum-hard would offer a better lower bound, if only for a weak
model of computation, and would open the door for further lower bound
improvements.

The optimum binary search tree problem, for example, can be solved in
O(n2) time [Knu71]. It is widely believed that this is also a lower bound, but
no lower bound better than Ω(n log n) has been proven. Knuth’s algorithm
uses dynamic programming, which is a much more powerful tool than what
is required for a O(n2) 3sum algorithm. Also, Knuth’s algorithm requires
Θ(n2) storage, which is not required to solve 3sum in O(n2) time (no op-
timum binary search tree algorithm has been found that uses o(n2) space

8

and polynomial time). These facts suggest that the problem is harder than
3sum, though this has not been proven. Optimum binary search tree is just
one of many problems that are believed to have Θ(n2) worst-case runtime
but are not known to be 3sum-hard. Proving 3sum-hardness would improve
the best known lower bounds for these problems.

9

References

[Bar96] A. Hernández Barrera. Finding an o(n2 log n) algorithm is some-
times hard. In Frank Fiala, Evangelos Kranakis, and Jörg-Rüdiger
Sack, editors, Proceedings of the 8th Canadian Conference on Com-
putational Geometry (CCCG-96), volume 5 of International Infor-
matics Series, pages 289–294, Carleton University, August 12–15
1996. Carleton University Press.

[BHP99] Gill Barequet and Sariel Har-Peled. Polygon-containment and
translational min-hausdorff-distance between segment sets are
3sum-hard. In Proceedings of the Tenth Annual ACM-SIAM Sympo-
sium on Discrete Algorithms, pages 862–863, N.Y., January 17–19
1999. ACM-SIAM.

[CGL83] Bernard Chazelle, Leo J. Guibas, and D. T. Lee. The power of
geometric duality. In 24th Annual Symposium on Foundations of
Computer Science, pages 217–225, Tucson, Arizona, 7–9 November
1983. IEEE.

[Eri95] Jeff Erickson. Lower bounds for linear satisfiability problems. In
Proceedings of the 6th Annual Symposium on Discrete Algorithms,
pages 388–395, New York, NY, USA, January 1995. ACM Press.

[GO95] Gajentaan and Overmars. On a class of O(n2) problems in compu-
tational geometry. CGTA: Computational Geometry: Theory and
Applications, 5, 1995.

[GRT97] Gomez, Ramaswami, and Toussaint. On removing non-degeneracy
assumptions in computational geometry. In CIAC: Italian Confer-
ence on Algorithms and Complexity, 1997.

[Knu71] Donald E. Knuth. Optimum binary search trees. Acta Informatica,
1(1):14–25, January 1971.

[SEO02] Michael Soss, Jeff Erickson, and Mark Overmars. Preprocess-
ing chains for fast dihedral rotations is hard or even impossible.
April 19 2002.

10

