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ABSTRACT

Learning agents often find themselves in environments in which rare signif-

icant events occur independently of their current choice of action. Traditional

reinforcement learning algorithms sample events according to their natural prob-

ability of occurring, and therefore tend to exhibit slow convergence and high

variance in such environments. In this thesis, we assume that learning is done

in a simulated environment in which the probability of these rare events can be

artificially altered. We present novel algorithms for both policy evaluation and

control, using both tabular and function approximation representations of the

value function. These algorithms automatically tune the rare event probabilities to

minimize the variance and use importance sampling to correct for changes in the

dynamics. We prove that these algorithms converge, provide an analysis of their

bias and variance, and demonstrate their utility in a number of domains, including

a large network planning task.
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ABRÉGÉ

Les agents en phase d’apprentissage se retrouvent souvent dans des en-

vironnements dans lesquels les événements rares et signifiants surviennent

indépendemment de leur choix d’action. Les algorithmes traditionnels d’appren-

tissage par renforcement sondent les événements par rapport à leur probabilit

de se réaliser, et ont donc tendance à manifester une convergence lente et une

variance élevée dans ces environnements. Dans cette thèse, nous supposons que

l’apprentissage se déroule dans un environnement simulé dans lequel la proba-

bilité de ces événements rares peut être artificiellement altéré. Nous présentons

de nouveaux algorithmes pour l’évaluation d’une politique et pour le contrôle, en

utilisant pour les deux d’une part une représentation tabulaire et d’autre part une

approximation de la fonction de valeur. Ces algorithmes règlent automatiquement

les probabilités d’événements rares pour minimiser la variance et utilisent un

échantillonnage d’importance pour corriger les changements dans les dynamiques.

Nous prouvons que ces algorithmes convergent et fournissons une analyse de

leur biais et de leur variance. Nous démontrons l’utilité de ces algorithmes dans

différents domaines, incluant une tâche de planification dans un large réseau.
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CHAPTER 1
Introduction

Learning agents often find themselves in environments in which rare signifi-

cant events occur independently of their current choice of action. For example, a

stock trading agent may experience a market crash, a network planning agent may

experience random link outages that disconnect the network, or a robot exploring

a rugged terrain may be caught by a sudden gust of wind that rolls it over. Due

to the infrequent nature of these types of events, an agent would require a large

number of interactions with the environment in order to observe enough of these

events to accurately incorporate them into its learned model of the environment.

At the same time, these types of events can have a significant enough impact on

the agent that they must be incorporated into the learned model in order for the

learning process to be successful.

Traditional reinforcement learning algorithms sample events according to their

natural probability of occurring, and therefore tend to exhibit slow convergence

and high variance in environments with rare significant events. In their analysis of

the bias and variance of a standard model-based reinforcement learning algorithm,

Mannor et al. (2007) note that while variance in the reward estimates has a

linear effect on the variance in the value function estimates, the value function

estimates are nonlinear with respect to the transition probability estimates, and

the nonlinearity is substantial. Since the presence of rare events can cause high
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variance in the transition probability estimates, this can lead to significant errors

in the value function estimates.

In this thesis, we present novel learning algorithms that take into account

these rare events in order to converge faster with lower variance. We adapt a

method that is commonly used in the rare event simulation community, called

adaptive importance sampling, to the problem of learning optimal control strate-

gies in Markov decision processes. We prove that these algorithms converge,

provide an analysis of the bias and variance of the algorithms, and demonstrate

their utility in a number of domains, including a large network planning task.

1.1 Markov Decision Processes and Reinforcement Learning

Reinforcement learning is a computational approach for studying goal-directed

agents that operate in complex stochastic environments. In reinforcement learning,

environments are commonly represented as Markov decision processes, which are

characterized by a set of states that an agent can find itself in and sets of actions

that an agent can take at each state. An agent interacts with the environment by

observing its current state, and choosing an action. As a result of the action, the

environment responds with a new next state and a reward signal, which is typically

a scalar value. The goal of the agent is to learn an optimal policy, or mapping

from states to action, such that it maximizes the reward that it accumulates as it

moves about the environment. The total expected return that an agent can expect

to accumulate if it starts at a specific state and behaves according to a policy is

called the value of that state given the policy. The collection of such values for all

states is called the value function.
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Reinforcement learning has seen successes in many domains, from scheduling

tasks such as elevator dispatching (Crites and Barto, 1996), resource-constrained

scheduling (Zhang and Dietterich, 2000), job-shop scheduling (Zhang and Diet-

terich, 1995), and supply chain management (Stockheim et al., 2003), to game

playing tasks such as robot soccer (Stone and Veloso, 1999; Stone et al., 2005), cre-

ating a world champion backgammon player (Tesauro, 1995), and achieving expert

level performance at computer Go (Silver et al., 2007). In all of these cases, and in

most applications of reinforcement learning, agents learn in artificial environments,

and do not interact with the real world. These artificial environments are realized

through software simulators. Reinforcement learning algorithms typically focus on

the agent, and treat the simulator as a black box for generating samples.

In this thesis, we shift the focus to the simulator, and look at ways of im-

proving the performance of learning agents by altering the environments such

that learning can proceed faster. We focus on a specific case where the states in

our MDP are partitioned into two subsets, normal states and rare event states.

Normal states represent the states in which the agent finds itself when everything

is proceeding as usual. Rare events states are a special subset of the states that are

visited infrequently, and only due to some extreme circumstance. For example, in

elevator dispatching, the normal states would represent the typical operating con-

ditions of the elevators, and the rare event states would represent the fact that one

or more elevators are out of service. A learning agent that learns a policy based on

data from a simulator is going to see much more data for the normal states, and

may quickly learn a very good policy for the normal operation. On the other hand,
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the agent is going to see very few samples of these rare events. In order for the

agent to learn how to behave optimally in the rare event states, it must observe a

sufficient number of samples. This is inefficient, as the agent will spend most of its

time in the normal states, where it has already learned an optimal policy. Most of

the agent’s time will be wasted waiting for the rare events to occur.

Instead of waiting for the rare events to occur naturally, the simulation

community has developed techniques for artificially increasing the rate of rare

events, while still obtaining unbiased results. In this thesis, we incorporate some of

these techniques into the reinforcement learning framework in order to improve the

performance of learning agents in environments with rare events.

1.2 Importance Sampling and Rare Event Simulation

Rare events have been studied extensively in the simulation community

(see Asmussen and Glynn, 2007; Bucklew, 2004 for comprehensive reviews),

where the main objective is to predict the probabilities of certain events occur-

ring. Many Markov, or Markov-like, models have been studied such as network

queues (de Boer et al., 2000, 2002), inventory control problems (Glasserman

and Liu, 1996), call centers (Koole and Mandelbaum, 2002), mechanical struc-

tures (Bucher, 1988; Au and Beck, 1999), and communication systems (Shan-

mugam and Balaban, 1980; Devetsikiotis and Townsend, 1993; Stadler and Roy,

1993), where example rare events are buffer overflows, depletion of inventory,

excessive wait times, structural failures, or transmission errors, respectively. The

underlying idea behind most of the approaches to rare event simulation is to

simulate the system under an alternate probability measure, in which the rare
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events occur more frequently, and then correct for the change of measure us-

ing importance sampling. The search for an optimal change of measure can be

done in several ways, including stochastic approximation and the cross-entropy

method (Rubinstein and Kroese, 2004; de Boer et al., 2002). The goal of these

methods is to find a change of measure such that the variance in the rare event

probability estimator is minimized.

Finding an optimal change of measure is a difficult problem. If the frequency

of the rare events is increased too much, then the estimator is starved of samples

from the normal states, but if the frequency is too low, then we may be no

better off than before changing the distribution. Another problem arises from

how the change of measure is induced. In some applications, we may be able to

directly change the transition distribution, in which case we can calculate exactly

how changes in the distribution affect the frequency of the rare events. In most

complex systems, however, the transition distribution will be a parameterized

function, and by changing the parameter values we indirectly alter the dynamics

of the system. In these situations, it is not always straightforward to calculate

exactly how changes in the parameters relate to changes in the frequency of the

rare events. This leads to difficulties in finding optimal parameter settings, as well

as in calculating the importance sampling weights that are needed to correct for

the change of measure.

The study of variance reduction is a classical research area in simulation,

and the literature is considerable. The most commonly used methods for variance

reduction are importance sampling, control variates, and stratification. Work has
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been done on using control variates to improve the performance of reinforcement

learning algorithms (Baxter and Bartlett, 2001; Greensmith et al., 2004). Impor-

tance sampling has also been applied to reinforcement learning (Precup et al.,

2000, 2001, 2006). However, in this work importance sampling is not used as a

variance reduction technique; instead, the goal is to allow an agent to learn about

one policy from samples generated under a different policy.

1.3 Contributions

In this thesis, we present two novel algorithms for learning in environments

with rare events: one for learning in environments with a small number of discrete

states, and one for learning in environments with large or infinite state spaces. We

present proofs that the algorithms converge, and demonstrate the performance

advantages on a small domain made up of randomly generated problems, and on a

large network planning domain. In both cases, we show that our algorithms out-

perform the standard approaches. We also investigate the use of our techniques to

do policy optimization. Although for the network planning domain, our algorithms

do not outperform the standard approach, we gain insight into ways in which our

techniques can be improved. Our general approach of using reinforcement learning

for optimization in the network planning domain does give excellent results, and to

our knowledge, we present the largest network designed by a learning agent with

no prior domain knowledge that is currently available in the literature.

1.4 Outline

We begin with a survey of the required background material on reinforcement

learning and importance sampling on Markov chains in Chapter 2. In Chapter 3
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we describe our rare event framework, and the learning algorithms. Chapter 4

contains an analysis of the bias and variance of our algorithms, and a discussion

of the convergence rates. Our experimental results are described in Chapter 5,

and we conclude with a further discussion on the contributions of this work, and

directions for future work in Chapter 6. Appendix A contains an overview of the

notation and concepts from probability theory and stochastic processes that we

use throughout this thesis, and Appendix B contains proofs of the theorems from

Chapter 3.
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CHAPTER 2
Background

In this chapter, we introduce the reinforcement learning framework, and the

techniques from stochastic simulation that we use throughout the rest of this

thesis. The probability theory and statistical notation generally follows that of

Wasserman (2004), and is summarized in Appendix A.

2.1 Reinforcement Learning (MDP) Framework

Reinforcement learning (Sutton and Barto, 1998) is concerned with learning

through interaction. A reinforcement learning problem is typically characterized

by an environment and a learning agent. The learning agent interacts with the

environment at discrete time steps t = 0, 1, . . . . The environment is represented

by a Markov decision process, which consists of a set of states S, a set of actions

A, and the one-step dynamics of the environment. At each time step t, the agent

observes its current state st ∈ S, chooses to take an action at ∈ A, and then the

environment responds with a next state st+1 ∈ S as well as a numerical reward

signal rt+1 ∈ R. For MDPs with finite states and actions, given any state s and

action a, the probability of the next state s′ is given by the transition probability

distribution

p(s′|s, a) = P (st+1 = s′|st = s, at = a) ,
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and the rewards are given by a non-negative, bounded, real valued function

r : S × A × S → R, where r(s, a, s′) denotes the reward for a transition from state

s to s′ under action a.

The state and action sets may also be infinite or continuous, in which case p

is a density, and the notation changes accordingly. The agent selects its actions

according to a policy, π : S × A → [0, 1] where π(a|s) = P (at = a|st = s). The

starting states s0 are drawn from a distribution µ.

Tasks in which the environment contains special terminal states, are called

episodic tasks, and an episode is a sequence of states, actions, and rewards starting

from some start state and ending in a terminal state. Non-episodic tasks are

called continuing tasks. We note that episodic tasks can be treated as continuing

tasks, in which the terminal states are considered to be absorbing states that

generate 0 reward. That is, once the agent enters a terminal state, it remains there

indefinitely, collecting no reward. Therefore, the remainder of this section considers

continuing tasks, but the results also apply directly to episodic tasks.

There are two main types of reinforcement learning problems: policy evalua-

tion, and control. In the policy evaluation problem, the agent is given a policy, and

the goal is to evaluate the quality of the policy. In the control problem, the goal of

the agent is to learn an optimal policy. Most reinforcement learning algorithms are

based on estimating some measure of the goodness of states, or state-action pairs.

These measures are referred to as value functions. The value of state s under
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policy π is defined as

V π(s) = Eπ (Rt|st = s) = Eπ

( ∞∑
k=0

γkrt+k+1|st = s

)
, (2.1)

where Eπ denotes the expected value given that the agent follows policy π. The

discount factor γ ∈ [0, 1] controls the weight of immediate rewards versus future

rewards. We use Rt to denote the sum of the discounted future rewards starting

from time t. The optimal value function gives the value of every state s under an

optimal policy:

V ∗(s) = max
π

V π(s).

Similarly, the value of taking action a in state s and thereafter following

policy π, is defined as:

Qπ(s, a) = Eπ (Rt|st = s, at = a) = Eπ

( ∞∑
k=0

γkrt+k+1|st = s, at = a

)
.

The optimal state-action value function is defined as:

Q∗(s, a) = max
π

Qπ(s, a),∀s, a.

For convenience, the state-action values Q are often referred to as Q-values.

For finite state, finite action MDPs, the transition distribution for a given

policy π can be written as a |S| × |S| matrix P π with entries

P π
ss′ =

∑
a∈A

π(a|s)p(s′|s, a),
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and the expected reward Rπ as a |S|-dimensional vector with entries

Rπ
s =

∑
a∈A

π(a|s)
∑
s′∈S

p(s′|s, a)r(s, a, s′).

The value function for a policy π and discount factor γ can then be written as a

|S|-dimensional vector V π given by:

V π =
∞∑
n=0

γn(P π)nRπ.

Using the geometric series formula, the value function is given by:

V π = (I − γP π)−1Rπ,

where I is the identity matrix (Bellman, 1957).

While the above equations give the value function in terms of the sum of all

future rewards, the Bellman equations for V π give a recursive definition of the

value of each state in terms of the value functions of its successor states:

V π(s) =
∑
a∈A

π(a|s)
∑
s′∈S

p(s′|s, a) [r(s, a, s′) + γV π(s′)] ,∀s. (2.2)

If we treat V π(s) for all s ∈ S as unknown values, then the Bellman equations

form a set of linear equations whose unique solution is the value function V π.

Similarly, the Bellman equations exist for the other value functions defined above:

V ∗(s) = max
a∈A

∑
s′∈S

p(s′|s, a) [r(s, a, s′) + γV ∗(s′)] , (2.3)

Qπ(s, a) =
∑
s′∈S

p(s′|s, a)

[
r(s, a, s′) + γ

∑
a′∈A

π(a′|s′)Qπ(s′, a′)

]
, and (2.4)
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Q∗(s, a) =
∑
s′∈S

p(s′|s, a)

[
r(s, a, s′) + γmax

a′∈A
Q∗(s′, a′)

]
. (2.5)

There are two basic approaches to learning the value functions, Monte Carlo

methods and dynamic programming (DP) methods.

Monte Carlo methods for reinforcement learning approximate the value

function of a given policy by estimating the expected future returns given by

Equation 2.1. For notational convenience, from now on we will drop the super-

script π and assume that all value functions are with respect to a given policy π.

These methods generate sample trajectories and then approximate the value func-

tion for state s (or state-action pair (s, a)) by averaging the sum of the discounted

rewards accumulated after first visiting state s (or after the first time action a is

taken in state s). This averaging can be done using the standard Robbins-Monro

stochastic approximation algorithm (Robbins and Munro, 1951), in which value

function estimates are initialized arbitrarily and then, after each observed tra-

jectory, the return Rt is calculated for each state st that was visited. The value

function estimates are then updated according to:

V (st)← V (st) + α [Rt − V (st)] ,

where α ∈ (0, 1) is a small positive fraction called the learning rate, or step-size

parameter. In some cases, the step-size parameter αt will depend on the current

time step t. A well-known result from stochastic approximation theory (see

Kushner and Yin, 2003, for a comprehensive treatment of the subject) tells us that
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to ensure convergence with probability 1, the step size parameters αt must satisfy

∞∑
t=0

αt =∞ and
∞∑
t=0

α2
t <∞.

In many practical applications, however, we can just take αt = α to be a small

constant value. It is common practice, in theoretical work, to preface a statement

with a phrase such as “under standard stochastic approximation conditions”

and use α to denote the step-size parameter, where it is implicit that the step-

size parameters are chosen to satisfy the required technical conditions to ensure

convergence.

Dynamic programming methods are a different approach for estimating value

functions, based on the Bellman equations. The value function is initialized to

arbitrary values V0(s) for all s. Then for t = 0, 1, . . . a sweep through all of the

states s ∈ S is performed and the new values are estimated as:

Vt+1(s) =
∑
a∈A

π(a|s)
∑
s′∈S

p(s′|s, a) [r(s, a, s′) + γVt(s
′)] ,∀s.

As t → ∞, the sequence of value functions Vt will converge to the actual value

function V . The process of initializing the value functions to an arbitrary value,

and then using the current estimates to improve subsequent estimates is called

bootstrapping.

DP and Monte Carlo methods differ in a number of important ways. DP

methods requires complete knowledge of the model of the transition probability

distribution and the reward function. In most applications this is not available.

The advantage of the DP method is that it only uses the next state and reward
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in calculating the updates, instead of the full future discounted return Rt that

is used in the Monte Carlo method. For certain tasks, trajectories may be long,

or possibly infinite, so it is advantageous to have a method that does not require

waiting until the end of a trajectory in order to calculate the updates.

Temporal difference learning, or TD-learning (Sutton, 1988), combines the

bootstrapping and one-step update ideas from DP with the ability to learn from

simulated data, rather than a complete model, as in the Monte Carlo method.

TD-learning targets the one-step updates given by rewriting Equation 2.2 as an

expected value:

V (s) = Eπ (rt+1 + γV (st+1)|st = s) .

The simplest TD method, TD(0), performs at each time step t the update:

V (st)← V (st) + α [rt+1 + γV (st+1)− V (st)] .

While Monte Carlo methods target the complete return:

Rt = rt+1 + γrt+2 + γ2rt+3 + . . . ,

TD methods are based on the idea that the sum of the immediate reward and the

value at the subsequent state can be used as an estimate for the return:

R
(1)
t = rt+1 + γVt(st+1),
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where Vt is an estimate of the value function at time t. Clearly, one could also use

the n-step return:

R
(n)
t = rt+1 + γrt+2 + γ2rt+3 + · · ·+ γn−1rt+n + γnVt(st+n),

for n ≥ 1, and in fact one can use any convex linear combination of n-step returns.

This forms the basis of the TD(λ) algorithm, which uses a weighted average of all

of the n-step returns. The target for the TD(λ) algorithm is the λ-return, defined

by:

Rλ
t = (1− λ)

∞∑
n=1

λn−1R
(n)
t ,

where λ ∈ [0, 1] is a parameter. When λ = 1, the λ-return is the same as the

Monte Carlo return, and when λ = 0 it is the same as TD(0). This definition

of TD(λ) is called the forward view, as it still requires an entire trajectory to be

observed before calculating all of the possible n-step returns and updating the

value function estimates. This is inefficient, and in cases where trajectories are

long, or infinite, it is not possible.

The most common way to address this problem of having to wait until the end

of a trajectory before performing an update is through the use of eligibility traces.

Eligibility traces are a method for performing the updates on-line as samples are

observed. Instead of performing value function updates by looking forward in time

to calculate the returns accumulated after visiting a state, eligibility traces allow

propagating updates backwards in time to the states that have been visited along

the trajectory, and which are therefore eligible for an update. There are different

ways to implement eligibility traces, such as accumulating traces and replacing
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traces. We will use the replacing traces method (Singh and Sutton, 1996), as it

has been shown to perform better than some other methods, and is simple to

implement. The eligibility trace for state s at time step t is denoted et(s) ∈ [0, 1].

The eligibility traces are initialized to be e0(s) = 0 for all s ∈ S, and at each time

step t, the eligibility traces are updated as follows:

et(s)←


γλet−1(s) if s 6= st;

1 if s = st,

for all s ∈ S. To perform the value function updates, the TD error at each time

step t is computed as:

δt = rt+1 + γVt(st+1)− Vt(st),

and then for all s ∈ S, the value function is updated:

V (s)← V (s) + αδe(s).

The TD(λ) algorithm solves the policy evaluation task, i.e. it finds the

value function for a given policy. It turns out that being able to calculate the

value function allows solving the policy improvement, or control problem as well.

Suppose that we have an arbitrary policy π, and we computed the value functions

V π and Qπ for that policy. Now suppose that we are at state s, and π would have

us choose action a. If instead, we were to choose action a∗ = argmaxa′∈AQ
π(s, a′),

called the greedy action for state s, then Qπ(s, a∗) ≥ Qπ(s, a), and it follows that

Qπ(s, a∗) ≥ V π(s). (2.6)
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If we let π′ be a new policy that picks, for each state s, the greedy action for s,

then for all s ∈ S, Qπ(s, π′(s)) ≥ V π(s). According to the policy improvement

theorem (Bellman, 1957), it follows that:

V π′(s) ≥ V π(s). (2.7)

Moreover, the policy improvement theorem states that if there is a strict inequality

in Equation 2.6 for any state, then there must be a strict inequality in Equa-

tion 2.7 for at least one state. Therefore, if there is at least one state in which the

greedy policy π′ would choose a different action than π, and

Qπ(s, π′(s)) > Qπ(s, a), 1

then we can expect a strictly greater long-term discounted reward by following

π′ instead of π, and so π′ is a better policy than π. This is the basis of the policy

improvement algorithm.

In general the value function is unknown, and so we cannot apply directly

the policy improvement algorithm. To solve this problem, policy evaluation steps

are interleaved with policy improvement steps, in a framework called generalized

policy iteration (GPI). The Sarsa(λ) algorithm (Rummery and Niranjan, 1994) is

based on GPI, using TD(λ) for the policy evaluation step. The only modification is

that the agent learns the state-action value function Q, rather than just the state

1 It is important to check that this strict inequality holds, because there may be
more than one action with the same Q-value.

17



value function V . For each state-action pair (s, a) an estimate of Q(s, a) and an

eligibility trace e(s, a) are kept. The agent follows a policy by which it chooses

the greedy action for the current state with high probability, or some other action

otherwise. At each time step t, for the current state st, the agent chooses action at

according to its current policy, and then observes the next state st+1 and reward

rt+1. The update becomes

Qt+1(s, a) = Qt(s, a) + αδtet(s, a),

for all s, a, where:

δt = rt+1 + γQt(st+1, at+1)−Qt(st, at)

and

et(s, a) =


1 if s = st and a = at;

0 if s = st and a 6= at;

γλet−1(s, a) if s 6= st,

and at+1 is the chosen action for state st+1. Sarsa(λ) is an example of an on-policy

reinforcement learning algorithm, as it always selects actions according to the pol-

icy derived from the current value function estimates. The name Sarsa(λ) comes

from the fact that updates are performed using the tuple (st, at, rt+1, st+1, at+1).

The only problem that remains is that the policy improvement algorithm

requires a good approximation of the value function for all states and all actions.

Clearly, if the greedy action is chosen too often, and our approximation of the

value function is poor, then the agent might not only pick a suboptimal action,

but it will also not learn anything about the other, possibly optimal, actions. GPI
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algorithms typically require an assumption that all state-action pairs are visited

infinitely often in order for convergence to be guaranteed. In order to guarantee

that this assumption is met, an agent is required to occasionally pick actions

different from the greedy action. This is referred to as exploration, as instead of

exploiting its knowledge of the value function in order to pick what it thinks is an

optimal action, the agent is exploring new actions in order to improve its value

function estimates.

The exploration/exploitation tradeoff poses an important and challenging

problem. While we would like the agent to spend its time taking actions that it

knows to be good, its knowledge of the environment is imperfect, and it may have

yet to discover that some other action is better than the one that it thinks is best.

At the same time, if the agent has found the optimal action, then any time spent

exploring other actions is wasted. Therefore, we would like our agent to take more

exploratory actions early in the learning process, when its approximation of the

value function is poorer, and fewer exploratory actions as the approximation of

the value function improves. The simplest means to ensure sufficient exploration

is to use exploring starts. That is, each episode begins with a state-action pair

(s0, a0) that is chosen randomly. This is inefficient, since it only guarantees one

exploratory sample on each episode.

Two other simple exploration strategies are ε-greedy and Boltzmann softmax.

In ε-greedy exploration, at each time step the greedy action is chosen with proba-

bility 1− ε, and with probability ε ∈ [0, 1] an action is selected uniformly randomly

from the available actions. In general ε is initialized to a large value, which ensures
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lots of exploration, and then ε decreases over time. Under the Boltzmann softmax

strategy, at each time step t, action a is chosen with probability

eQt(st,a)/τ∑
b∈A e

Qt(st,a)
,

where τ > 0 is a parameter called the temperature. When the temperature is

high, actions are selected with nearly the same probability, thus ensuring frequent

exploration. As the temperature is lowered, actions with higher Q-values are

selected more frequently, and as τ → 0, Boltzmann softmax action selection

becomes the same as greedy action selection.

The exploration/exploitation tradeoff is well studied, and a number of

solutions have been proposed. While the ε-greedy and Boltzmann softmax

strategies ensure frequent exploration, they both rely on parameters ε and τ ,

respectively, that need to be tuned. A more powerful exploration/exploitation

strategy, called E3 (Kearns and Singh, 1998), led to a provably near-optimal

polynomial time algorithm for learning in MDPs. The strategy employed by

E3 is to maintain statistics for each state in order to represent the amount of

uncertainty the agent has about its approximation for the value function at that

state. At states with higher uncertainty, more exploratory actions are chosen,

and once the uncertainty at a state has decreased past a certain threshold, no

more exploration is performed at that state. The R-MAX algorithm (Brafman

and Tennenholtz, 2003) is a simpler strategy that uses the idea of optimism in the

face of uncertainty (Kaelbling et al., 1996), and obtains the same near-optimal,

polynomial time guarantees as E3. The optimism in the face of uncertainty
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strategy can be described as assuming that actions which are unknown will obtain

the maximum possible reward, denoted Rmax. Intuitively, the agent will select

suboptimal actions until it knows enough about them to declare them suboptimal.

This has the effect of guaranteeing that the policy will either be optimal, or it will

ensure quick exploration.

The main problem that we consider in this thesis is that of variance reduction,

and our approach is to use importance sampling. In the reinforcement learning

literature, work has been done to directly reduce variance in the value function

estimates using control variates (Baxter and Bartlett, 2001; Greensmith et al.,

2004). Techniques such as hierarchical learning and function approximation

can also be viewed as indirectly addressing the problem of variance. Function

approximation is typically presented as a technique for generalization (Sutton and

Barto, 1998). Generalization allows for learning in large state spaces by exploiting

the fact that information gathered in one state can tell us something about similar

or nearby states. This generalization has the effect of “smoothing out” the value

function estimates over the state space, thus reducing variance in the estimates

due to insufficient data and overfitting. Hierarchical reinforcement learning

techniques such as MAXQ (Dietterich, 1998), hierarchical abstract machines (Parr

and Russell, 1998), and the options framework (Sutton et al., 1999) all address

variance in a similar way by decomposing a problem into smaller subproblems.

By reasoning at higher levels of abstraction, the problem of variance that arises

at the lower levels can be reduced. Importance sampling has also been used in

the context of reinforcement learning, albeit for a different purpose. Precup et al.
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(2000) used importance sampling for off-policy learning, where the purpose is

to learn a value function for a policy different from the policy that was used to

generate the data.

2.2 Importance Sampling and Rare Event Simulation

Stochastic simulation is concerned with estimating properties of a system by

observing its behaviour. The literature on stochastic simulation is extensive (see

Bratley et al., 1986; Asmussen and Glynn, 2007 for comprehensive treatments).

The staple of stochastic simulation is the crude Monte Carlo (CMC) method, in

which a quantity of interest is approximated by observing multiple samples, or

replicates of the quantity, and then taking the average value as the approximate

value. More formally, suppose that we have a sequence of independent identically

distributed (iid) random variables X1, X2, . . . , and let Xn = n−1
∑n

i=1 Xn be the

sample average. Then if z = E (|X1|) < ∞,2 the strong law of large numbers

(SLLN) states that Xn → z almost surely. The central limit theorem (CLT) goes

further by saying us that if the X1, X2, . . . , Xn are iid with mean z = E (X1)

and variance σ2 = V (X1), then the sample mean Xn has a distribution which is

approximately Normal, with mean z and variance σ2/n.

Let X be a random variable, and A a measurable event. Rare event simu-

lation (Bucklew, 2004; Juneja and Shahabuddin, 2006) considers the problem of

estimating a probability such as z = P (X ∈ A), where z is small (say on the

2 Since the random variables are iid, we could define z = E (Xi) for any i, and so
to ease notation we will often write z = E (X1).
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order of 10−3 or less). We can estimate this probability using the CMC method by

letting X1, X2, . . . , Xn be iid random variables and letting Xn =
∑n

i=1 I (Xi ∈ A),

where I (B) is the indicator function that takes the value 1 if B is true, or 0 oth-

erwise. Since Z = I (Xi ∈ B) is a Bernoulli with probability z, it has variance

σ2
Z = z(1 − z). We write f(x) ≈ g(x) if f(x)/g(x) → 1 in some limit like x → 0

or x → ∞, and in this notation we have that σ2
Z ≈ z. The relative error of this

estimator is defined as

σZ
z

=

√
z(1− z)

z
≈ 1√

z
→∞, as z → 0.

To put this into perspective, supposing that we wish to calculate the number of

samples N required to ensure a maximum relative error of 10% with respect to the

half-width of the 95% confidence interval. Using the central limit theorem, we have

that 1.96σZ/(z
√
N) = 0.1, so

N =
100 · 1.962z(1− z)

z2
≈ 100 · 1.962

z
,

which increases like z−1 as z → 0. Therefore, if z is small, on the order of 10−6,

then N is on the order of 108. Rare events with probabilities on the order of 10−6

or even 10−9 are not uncommon in many practical applications such as bit-errors

in telecommunication systems, overflows in network queues with large buffers,

or read errors on computer hard drives. In such applications, CMC methods are

infeasible. One approach to overcome this type of problem is importance sampling.

Importance sampling (IS) is a commonly used approach for variance reduction

in Monte Carlo simulations (Glynn and Iglehart, 1989; Shahabuddin, 1994;
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Heidelberger, 1995). The objective of IS is to modify the sampling distribution

so the majority of the sampling is done in areas that contribute the most to z. IS

is based on the simple observation that if X is a random variable and h is some

function of X, then

z = Ef (h(x)) =

∫
h(x)f(x)dx =

∫
h(x)f(x)

g(x)
g(x)dx = Eg (Y ) ,

where f and g are probability distribution with g having the same support as f

(i.e. for all x, if f(x) > 0, then g(x) > 0), Y = h(X)f(X)/g(X), and Ep denotes

the expectation with respect to p. Therefore, we can simulate X1, . . . , Xn ∼ g, and

estimate z by

ẑ = N−1

N∑
i=1

Yi = N−1

N∑
i=1

f(Xi)

g(Xi)
h(Xi).

The values f(Xi)/g(Xi) are referred to as the importance sampling corrections,

or weights. The importance sampling corrections are also often referred to as the

likelihood ratios, and the distribution f/g corresponds to the Radon-Nikodym

derivative. By the weak law of large numbers, ẑ → z in probability. That is, for

every ε > 0,

P (|ẑ − z| > ε)→ 0

as N → ∞. However, with a poor choice of g, the variance of the estimator ẑ

may be large or even infinite. This typically occurs when the distribution of g has

thinner tails than f . Similarly, if g(x) is small over some set A where f(x) is large,

then the importance sampling weights could be large, leading to a large variance.

Therefore, it is important that g is chosen wisely.
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An important result is that for every distribution f and bounded function h,

there exists a choice of g that minimizes the variance of ẑ, and it is given by

g∗(x) =
|h(x)|f(x)∫ |h(s)|f(s)ds

. (2.8)

If h(x) ≥ 0 under f almost surely, the variance of such an estimator is 0 (Wasser-

man, 2004). Intuitively, this says that we would like to sample x exactly pro-

portionally to the contribution of h(x) to z. It is important to note that the

denominator on the right hand side of Equation 2.8 contains the value that we are

trying to approximate, i.e. if we knew how to evaluate
∫ |h(s)|f(s)ds, we would

likely be able to calculate z exactly. However, this value can be estimated using

stochastic approximation. Provided that we ensure that at each step, the approx-

imation to g has the same support as f , then in general, as the approximation

improves, the variance of the estimator decreases. This is the basis of adaptive im-

portance sampling methods. It is noted by Asmussen and Glynn (2007) that even

if the approximation is inaccurate, a large reduction in variance can be achieved by

sampling outcomes x in rough proportion to |h(x)|f(x).

2.3 Adaptive Importance Sampling on Discrete Markov Chains

One of the main applications that has motivated a large amount of research in

Monte Carlo simulation and importance sampling is simulating particle transport

through a medium. Particle transport was also one of the original problems

addressed through Monte Carlo simulation (Metropolis and Ulam, 1949), and

remains an active area of research (Booth, 1985; Kollman, 1993; Kollman et al.,

1999; Desai and Glynn, 2001). The general model for studying particle transport
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through a medium is to model the path of a particle as a Markov chain. A particle

starts from some source emitter, and the states are generally the locations where

the particle collides with other particles. Particle motion is inherently stochastic,

as are the results of collisions with other atoms in the medium through which it

is passing. The Markov chain is transient; it is assumed that at some point the

particle will be absorbed by another atom as a result of a collision, or it will escape

the medium or some region of interest.

Associated with each transition is a score, typically corresponding to some

physical quantity of interest such as the energy released through a collision,

or simply an indicator of whether the particle has been absorbed, etc. The

notion of a score in particle transport is equivalent to the reinforcement learning

notion of a reward. In general, the objective in particle transport simulation is

to estimate the expected total score from starting at a state, or set of states; the

score would represent, for example, the total energy released per particle or the

probability of a particle escaping a region of interest without being absorbed. The

notion of expected total score directly corresponds to the reinforcement learning

notion of a value function. Due to the nature of the simulated particles, namely

their size, simulations that use “nature’s” transition probabilities can be time

consuming. Simulating accurate models of complex material geometries can be

computationally expensive, and only a small number of simulated trajectories may

contribute nonzero scores.

Importance sampling has been proposed as a solution to improve the efficiency

of simulators for studying particle transport (Booth, 1985; Kollman, 1993; Kollman
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et al., 1999), and we refer to the proposed approach as the AMC algorithm. The

general idea of the AMC algorithm is to begin with an initial approximation of

the optimal sampling distribution, and then proceed to iteratively improve the

approximation from data generated using the sampling distribution, unbiased by

the appropriate likelihood values.

The AMC algorithm operates on a Markov chain with a finite state space S.

Let P = (pss′ : s, s′ ∈ S) denote the transition matrix, and let r : S × S → R+

denote the one step positive reward function associated with each transition. Let

T ⊆ S denote the terminal states, and U = S \ T denote the interior states. We

assume that T is reachable from all states in U , and define τ = inf {n : sn ∈ T }
as the a.s. finite stopping time for all initial states s0. The value function, V (s) is

defined as:

V (s) = E

(
τ−1∑
t=0

r(st, st+1)|s0 = s

)
,

for all interior states s ∈ U , and V (s) = 0 for all terminal states s ∈ T .

Kollman (1993) shows that the optimal, or minimum variance sampling

transition matrix for this Markov chain, denoted P ∗, has entries

p∗ss′ =
pss′(r(s, s

′) + V (s′))∑
s′′∈S pss′′(r(s, s

′′) + V (s′′))
=
pss′(r(s, s

′) + V (s′))
V (s)

,

for all s, s′ ∈ S. It can be easily verified that since r is deterministic, if we were

to draw one sample transition from state s, then we could calculate V (s) exactly.

Therefore P ∗ is a zero variance sampling distribution. Of course, it is only of

theoretical interest as it requires knowing V (s) for all states s ∈ S a priori. Note

also that this result only holds for non-negative cost functions.
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The AMC algorithm begins by selecting an initial sampling transition matrix

P (0) = (p
(0)
ss′ : s ∈ U , s′ ∈ S), which may be initialized based on prior knowledge

of the problem, results of previous simulation runs, or simply set to be equal to

the original transition matrix. The next step of AMC is to choose an initial state

s ∈ U , and simulate a trajectory up to time τ , the time at which a terminal state

is reached, using the transition matrix P (0). Let 〈s0, s1, . . . , sτ 〉 be the set of states

visited on the trajectory. Then the likelihood of this trajectory is

L =
τ−1∏
i=0

psisi+1

p
(0)
sisi+1

, (2.9)

and the accumulated reward for the trajectory is

R =
τ−1∏
i=0

r(si, si+1).

AMC proceeds by performing a number of independent simulations from s, and

taking the average accumulated reward, weighted by the likelihood ratios, as an

estimate V (1)(s). This procedure is repeated for all s ∈ U , giving estimates V (1)(s)

of the solution V (s).

At iteration n ≥ 1 the AMC algorithm uses the previous estimates V (n) to

construct a new sampling distribution P (n) with entries

p
(n)
ss′ =

pss′(r(s, s
′) + V (n)(s′))∑

s′′∈S pss′′(r(s, s
′′) + V (n)(s′′))

.

Then, as for n = 0, P (n) is used to simulate trajectories for each state s ∈ U , the

output of which is used to generate new value function estimates V (n+1)(s). This

process is repeated over a number of iterations, and it is shown that under certain
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conditions the rate of convergence of the estimates to the real value function is

exponential as a function of the number of iterations.

The AMC algorithm was later extended to perform updates after each step of

the simulation, rather than at the end of a batch of trajectories. This algorithm,

called the ASA algorithm (Ahamed et al., 2006), uses stochastic approximation to

estimate the optimal sampling transition matrix, allowing it to perform updates

on-line. ASA is shown to converge in the limit. However the authors make no

claims regarding the convergence rate, and they do not discuss if and when

the exponential convergence rates from AMC can be obtained. The empirical

results show that for rare event simulation, as the probability of the rare event

decreases, ASA performs better than AMC. It is important to note that both

AMC and ASA assume knowledge of the the transition probabilities and the

reward function. They also assume that samples can be drawn from an arbitrary

sampling distribution.
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CHAPTER 3
Learning in the Presence of Rare Events

In this chapter, we present the Rare Event Adaptive Stochastic Approxima-

tion (REASA) algorithm. REASA is a learning algorithm for MDPs with rare

events, and we define algorithms for policy evaluation with both tabular and func-

tion approximation representations of the value function. For both cases, we show

that the algorithms converge. We also provide an analysis of the bias and variance

of tabular REASA, based on the analysis by Mannor et al. (2007). We note that

a similar analysis for the function approximation case is not available, even for

standard TD-learning without importance sampling.

3.1 Rare Events in MDPs

In this thesis, we are concerned with problems involving rare, significant

events that occur as a result of environmental factors, and which are independent

of the current action taken by the agent. We model such a problem as an MDP

whose states S are partitioned into two disjoint subsets, the so-called “rare event”

states T , and the “normal” states U = S \ T . We describe the setup for the finite

state, finite action case, and note that the infinite case can be defined similarly.

We define the transition probability distribution as a mixture of two separate

transition probability distributions: f(s′|s, a), which captures the environment

dynamics during “normal” operating conditions, and g(s′|s), which captures
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the transitions into our “rare event” states. We assume that for all states s and

actions a, f(s′|s, a) = 0 for all s′ ∈ T , and similarly, g(s′|s) = 0 for all s′ ∈ U .

For each state s ∈ S, there is a small probability ε(s) ∈ [0, 1] that a “rare

event” will occur from this state, and we call ε(s) the rare event probability for

state s. We define the transition probability distribution p as:

p(s′|s, a) = (1− ε(s))f(s′|s, a) + ε(s)g(s′|s), (3.1)

and note that since T and U are disjoint with S = T ∪U , the transition probability

distribution can be rewritten as:

p(s′|s, a) =


(1− ε(s))f(s′|s, a) if s′ /∈ T ;

ε(s)g(s′|s) if s′ ∈ T .

We are concerned with rare events that have a significant impact on the

variance of the value function for a given policy. We therefore need to make a

distinction between events that occur rarely but have little or no effect on the

variance, and those that lead to high variance. We define the rare event states sets

as follows.

Definition 3.1.1. A subset of states T ⊆ S is called a rare event state set if the

following three properties hold:

1. For all s ∈ S, a ∈ A, and s′ ∈ T , f(s′|s, a) = 0 (i.e., transitions into T
cannot depend on the agent’s current action).

2. There exists s ∈ S and s′ ∈ T such that g(s′|s) > 0 (i.e., transitions into T
can be forced by the environment).
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3. Let V π
f denote the value function obtained by replacing p with f in (2.2).

Then, for the given policy π,

∃ s ∈ S s.t. |V π
f (s)− V π(s)| � 0.

The last condition means that states in the rare event set must (collectively)

have a large impact on the value function. We define rare events to be transitions

into the rare event state set.

We note that we use the term “rare event” loosely from the point of view

of the simulation community (Bucklew, 2004) in that our definition is not based

solely on the probability of the event. We require this distinction because it is

likely that in any environment, there will be events that occur infrequently, but are

not of interest in terms of the value function estimates.

3.2 Rare Event Adaptive Stochastic Approximation (REASA)

The ASA algorithm (Ahamed et al., 2006) combines stochastic approximation

with adaptive importance sampling in order to approximate a zero-variance change

of measure for a finite state Markov chain. ASA makes two strong assumptions:

(1) they assume that both the transition probabilities and the reward function,

collectively referred to as the model, is completely known, (2) they assume that

the distribution from which the samples are drawn can be arbitrarily modified.

Both of these assumptions are difficult to achieve in practical applications.

In many problems, the model is not given, and must also be learned through

simulation. In addition, the dynamics of practical problems are typically complex

and making arbitrary changes to the precise transition probabilities is not possible.
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The REASA algorithm relaxes both of these assumptions. We assume a rare

event MDP, as described in Section 3.1, and we assume no knowledge of the model

other than the true rare event probabilities ε(s) for all s ∈ S. We also assume that

we have access to a simulation environment in which the rare event probability can

be artificially modified, and we assume that the rare event state set T is known.

We define ε̂ : S → [0, 1] to be the rare event sampling parameter, and assume

access to a simulation environment that can generate samples from the sampling

distribution

q(s′|s, a, ε̂) = (1− ε̂(s))f(s′|s, a) + ε̂(s)g(s′|s), (3.2)

where f and g are unknown, and remain unchanged. By considering that the

state space S is separated into disjoint normal and rare event subsets, T and U
respectively, we note that the likelihood of any transition under the sampling

distribution can be computed by

L(s, a, s′) =


ε(s)/ε̂(s) if s ∈ T ;

(1− ε(s))/(1− ε̂(s)) if s /∈ T .

(3.3)

Previous work on importance sampling on Markov chains has considered only

the state value function V , and so we now present the zero-variance importance

sampling distribution in terms of the action-value function Q.

Theorem 3.2.1. Given an MDP with states S, actions A, one-step transition

probability distribution p, and reward function r, the zero-variance importance
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sampling distribution p∗ is given by

p∗(s′|s, a) =
p(s′|s, a)

∑
a′∈A π(a′|s′) [r(s, a, s′) + γQπ(s′, a′)]

Qπ(s, a)
(3.4)

Proof: See Appendix B.1

We can further simplify Equation 3.4 to be in terms of both V and Q:

p∗(s′|s, a) =
p(s′|s, a) [r(s, a, s′) + γV π(s′)]

Qπ(s, a)
.

Furthermore, if we use the fact that V (s) =
∑

a∈A π(a|s)Q(s, a), then we get

p∗(s′|s) =
∑
a∈A

π(a|s)p∗(s′|s, a) =

∑
a∈A p(s

′|s, a) [r(s, a, s′) + γV π(s′)]
V π(s)

,

which is form used by Ahamed et al. (2006). We prefer the form of Equation 3.4

because when we extend REASA to solve control tasks, it is useful to have

expressions in terms of state-action pairs.

Note that the existence of a zero-variance importance sampling distribution p∗

implies that Rp∗ = Qπ(s, a) if s0 = s and a0 = a. Therefore, if we calculate total

reward for a single trajectory starting from s and a under p∗, then we immediately

have the value function for that state-action pair. However, as has been previously

noted, the zero-variance importance sampling contains the value function Q, and

therefore is only of theoretical interest.

Given policy π, we define our optimal value for ε̂(s) as:

ε∗(s) = ε(s)

∑
s′∈T g(s′|s) [∑a∈A π(a|s)r(s, a, s′) + γV π(s′)

]
V π(s)

. (3.5)

for all s ∈ S. We approximate the values ε∗(s) on-line using samples.
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Algorithm 1 Rare Event Adaptive Importance Sampling
Input: Rare event set T ⊂ S, true rare-event probabilities ε(s), learning rates α, αT ,
and αU , and parameter δ > 0.

1. Initialize V̂ π arbitrarily, ε̂(s)← 1/|S|, T̂ (s)← 0, and Û(s)← 0 for all states s.
2. Select the initial state s0.
3. Initialize eligibility traces: e(s0) = 1 and e(s) = 0, ∀s 6= s0.
4. Repeat for t = 0, 1, . . . :

(a) Select an action at ∼ π(st, ·).
(b) Select whether a rare event happens, according to ε̂(st), and sample st+1

from f or g accordingly. Observe the reward rt+1.
(c) Compute the importance sampling weight:

wt =

{
ε(st)/ε̂(st) if st+1 ∈ T ;
(1− ε(st))/(1− ε̂(st)) if st+1 6∈ T .

(d) Compute the importance-sampling TD-error:

∆t = wt(rt+1 + γV̂ π(st+1))− V̂ π(st).

(e) Update the value estimates for all s ∈ S:

V̂ π(s)← V̂ π(s) + αe(s)∆t.

(f) If st+1 ∈ T , then:

T̂ (st)← (1− αT )T̂ (st) + αT ε(st)(rt+1 + V̂ π(st+1)),

else
Û(st)← (1− αU )Û(st) + αU (1− ε(st))(rt+1 + V̂ π(st+1)).

(g) Update the rare event probabilities:

ε̂(st)← min

(
max

(
δ,

|T̂ (st)|
|T̂ (st)|+ |Û(st)|

)
, 1− δ

)
.

(h) Update eligibility traces for all s ∈ St:

e(s)←
{

1 if s = st+1;
γλwte(s) if s 6= st+1.
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Algorithm 1 is our proposed approach for learning in the presence of rare

events for finite state MDPs where the value function is represented in tabular

form. It is based on the observation that we can rewrite Equation 3.5 as follows:

ε∗ =
T (s)

T (s) + U(s)
, (3.6)

where

T (s) = ε(s)
∑
s′∈T

g(s′|s)
[∑
a∈A

π(a|s)r(s, a, s′) + γV π(s′)

]
is the contribution to the value function at state s from the states in the rare event

state set T , and

U(s) = (1− ε(s))
∑
a∈A

π(a|s)
∑
s′∈U

f(s′|s, a) [r(s, a, s′) + γV π(s′)]

is the contribution to V π(s) from the states in the set U = S \ T of normal states.

For all s ∈ S, let

ε̃(s) =
min (max (δ, ε∗(s)) , 1− δ)∑
s′∈S min (max (δ, ε∗(s′)) , 1− δ) .

Note that this equals ε∗(s) if δ < ε∗(s) < 1 − δ. The parameter δ > 0 is used to

bound the importance sampling weights, which keeps the variance of the estimator

bounded. In general, we want δ to be smaller than the smallest non-zero value in

our transition matrix, and we have found that setting

δ = min
s∈S
{ε(s)/10}

works well in practice.
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In Algorithm 1, T̂ (s) and Û(s) are unbiased estimators for T (s) and U(s)

respectively. It follows from Equations 3.4 and 3.6, that as t → ∞, if δ < ε∗(s) <

1− δ, then

ε̂(s) =
T̂ (s)

T̂ (s) + Û(s)
→ ε∗(s),

for all states s ∈ S. These results are summarized in the following proposition.

Theorem 3.2.2. Using Algorithm 1 with the usual step-size conditions on α, αT ,

and αU , for any λ ∈ [0, 1] that does not depend on the action at, and assuming that

the MDP is unichain for ε = δ,1 we have that:

V̂ π(s)→ V π(s) almost surely.

Moreover, for all s ∈ S, ε̂(s)→ ε̃(s) almost surely.

Proof: See Appendix B.2

It should also be noted that while the treatment above is for non-negative

rewards (for ease of notation), the algorithm is formulated for the general case in

which the reward function may be positive or negative, which is an extension of

the original ASA algorithm.

3.3 REASA and Function Approximation

If the state space is large or continuous, then function approximation must be

used to estimate the value function. Here, we are concerned with value function

1 The unichain assumption is needed to invoke the stochastic approximation ar-
gument; see Bertsekas and Tsitsiklis (1996). Also note that if the MDP is unichain
for one value of ε ∈ (δ, 1− δ) it is unichain for all values.
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estimates that are linear in a set of feature vectors {φs} , s ∈ S:

V π(s) ≈ θTφs =
n∑
i=1

θ(i)φs(i),

where θ ∈ Rn is the learned parameter vector. We represent our eligibility traces

as a vector ~e of the same size as θ. We assume that the rare event states and

normal states are represented by disjoint features, and so we are able to determine

whether a state s is in the rare event state set T , or the normal state set U . We

no longer have a state-dependent rare event probability, and we assume that the

rare event probability ε is a constant over the state space. We discuss possible

extensions to this in Section 6.2.

Algorithm 2 presents our approach for learning in MDPs with rare events

where the value function is represented using linear function approximation.

Instead of keeping a state-dependent rare event probability estimate, we treat the

normal state set U and the rare event state set T as two states in a high-level

MDP. In this high level MDP, we only concern ourselves with transitions from a

normal state U to a rare event state T , and we estimate a parameter ε̂ that gives

us the probability of transitioning from U to T under our sampling distribution,

just as in the tabular version of REASA. As in the tabular case, we assume that

we can sample from the transition probability distribution

q(s′|s, a, ε̂) = (1− ε̂)f(s′|s, a) + ε̂g(s′|s),

where ε̂ is a parameter that we control.
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Algorithm 2 REASA with Linear Function Approximation
Input: Rare event set T ⊂ S, true rare-event probability ε, learning rates α, αT , and
αU , and parameter δ > 0.

1. Initialize parameter vector θ0 arbitrarily, ε̂0 ← 1/2, T̂0 = 0, and Û0 = 0.
2. Initialize the total importance sampling trajectory weight: c0 = 1.
3. Select the initial state s0.
4. Initialize eligibility vector: ~e0 = c0φ(s0).
5. Repeat for t = 0, 1, . . . :

(a) Select an action at ∼ π(st, ·).
(b) Select whether a rare event happens, according to ε̂t, and sample st+1

from f or g accordingly. Observe the reward rt+1.
(c) Compute the importance sampling weight:

wt =

{
ε/ε̂t if st+1 ∈ T ;
(1− ε)/(1− ε̂t) if st+1 6∈ T .

(d) Compute the importance-sampling TD-error:

∆t = wt(rt+1 + γθφ(st+1))− θφ(st).

(e) If st+1 ∈ T , then:

T̂t+1 = (1− αT )T̂t + αT ε(rt+1 + γθtφ(st+1)),

else
Ût+1 = (1− αU )Ût + αU (1− ε)(rt+1 + γθtφ(st+1)).

(f) Update the parameter vector: θt+1 = θt + α~et∆t.
(g) Update the rare event probabilities:

ε̂t+1 = min

(
max

(
δ,

|T̂t+1|
|T̂t+1|+ |Ût+1|

)
, 1− δ

)
.

(h) Update the trajectory weight: ct+1 = ctwt.
(i) Update eligibility traces:

~et+1 = γλwt~et + ct+1φ(st+1).
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We denote the rare event sampling probability at time t as ε̂t, and note that it

is a function of the entire trajectory up time t. We define an indicator variable It

which takes the value 1 if state st+1 ∈ T or 0 otherwise, which indicates whether a

rare event occurred at time t or not. We define our importance sampling ratio at

time t as:

wt =
ε

ε̂t
It +

1− ε
1− ε̂t (1− It).

Let Ωt(s) = {〈s0, a0, . . . , st−1, at−1, st〉|s0 = s} denote the set of all trajectories of

length t beginning at state s, and denote by ρp(ω) the probability of trajectory

ω ∈ Ωt(s) occurring when transitions are generated according to the original

transition probability distribution p. The likelihood of a trajectory ω ∈ Ωt(s)

generated under sampling distribution q is
∏t−1

i=0 wt.

Under conventional TD(λ), the cumulative updates to the parameter vector θ

following step t are given by the forward-view equations:

∆θt = α(Rλ
t − θTφt)φt,

Rλ
t = (1− λ)

∞∑
n=1

λn−1R
(n)
t ,

R
(n)
t = rt+1 + γrt+2 + · · ·+ γn−1rt+n + γnθTφt+n,

where φt is shorthand for φst .

Algorithm 2 computes the parameter updates as:

∆θt = α(R̄λ
t − θTφt)φtw0w1 · · ·wt, (3.7)
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where R̄λ
t is defined similar to Rλ

t above, except in terms of the weighted n-step

return:

R̄
(n)
t = rt+1wt + γrt+2wtwt+1 + · · ·+ γn−1rt+nwt · · ·wt+n−1 + γnwt · · ·wt+nθTφt+n.

Theorem 3.2.2 tells us that Ep

(
R

(n)
t |st

)
= Eq

(
R̄

(n)
t |st

)
for all n, and the

following result extends the idea to the case of linear function approximation.

Theorem 3.3.1. Under standard stochastic approximation conditions, Algorithm 2

converges in the limit, with probability 1, to the same estimates as the on-policy

TD-learning algorithm.

Proof: See Appendix B.3.
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CHAPTER 4
Theoretical Analysis

In this chapter, we consider the theoretical aspects of REASA. We analyze

the bias and variance in Section 4.1, and follow up with a brief discussion on the

convergence rates in Section 4.2.

4.1 Bias and Variance of Tabular REASA

Theorem 3.2.1 tells us that the minimum variance estimator comes from

sampling the next state-action pair in proportion to its contribution to the

value function for the current state-action pair. Therefore, without making any

additional assumptions on f and g, ε∗, as defined in Equation 3.5, is the optimal

rare event sampling parameter. Since we do not optimize individual transitions

from states in the normal state set to other states in the normal state set, our

estimator will exhibit variance. In fact, by oversampling the rare events, we

decrease the number of observed transitions between states in the normal state set,

and so we would expect the error in our estimates of these normal transitions to

increase.

For REASA to improve the performance, it must be the case that the contri-

bution to the variance of our estimator from the transitions to rare event states is

much larger than the contribution to the variance by transitions to normal states.

In this case, given a fixed number of samples, increasing the number of samples of

rare event transitions will lead to a greater decrease in the sample variance than
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the increase in the sample variance introduced by decreasing the number of normal

transitions. This follows from the fact that the sample variance is equal to the

variance divided by the number of samples.

Additionally, because the rare event state set is disjoint from the normal

state set, we can estimate the variance due to the individual transition probability

distributions, f and g, separately. We show this through an analysis in the same

spirit as the analysis presented by Mannor et al. (2007), which derives bias and

variance results for standard temporal difference algorithms.

For simplicity, let us assume that ε(s) = ε for all states s ∈ S (all the analysis

can be done without this assumption, but becomes more tedious). Let Rπ denote

the vector of immediate rewards for every state, with entries:

Rπ
s =

∑
a∈A

∑
s′∈S

π(a|s)p(s′|s, a)r(s, a, s′),

and P π be an |S| × |S| transition matrix under π, with entries:

P π
ss′ =

∑
a

π(a|s)p(s′|s, a).

From (3.1), we can re-write P π as:

P π = (1− ε)F π + εG,

where F π is the transition matrix corresponding to staying in the normal states,

and G is the matrix corresponding to transiting into the rare event states. Note

that according to our assumptions, G does not depend on π. Similarly, the reward

vector can be decomposed into two components, Rπ
F and Rπ

G.
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We use two sequences, {Xk}∞k=1 and {Yk}∞k=1, of geometrically distributed

random variables, with means (1 − ε)−1 and ε−1 respectively, to represent the

amount of time between transitions from the normal states and the rare event

states respectively. We also assume that the initial state is a normal state. Hence,

the simulation starts in some normal state and stays in the set of normal states

for X1 time steps, at which point it transitions to a state in the rare event set,

where it stays for Y1 time steps, then transitions back to the normal set for X2

time steps, etc.

We make two further simplifications. First, we assume that after each

excursion into the rare event state set, the system “jumps back” to the normal

state in which it was before entering; that is, (F π)iGj(F π)k ≈ (F π)i+k. Second, we

assume that the rewards for transitioning to states in the normal set are similar

regardless of the origin, that is that GRπ
F ≈ F πRπ

F . The analysis can be done

without these assumptions, but it becomes more tedious. These assumptions

are reasonable because in general the rare events model failures in the system,

such as a failed link in a network, and when the failure is no longer present, the

system resumes from the state prior to the failure. We define τ(k) =
∑k−1

i=1 Xk and

υ(k) =
∑k−1

i=1 Yk. The value function estimate, V π, can be re-written as:

V π=E

( ∞∑
k=1

γτ(k)+υ(k)

k−1∏
i=1

(
(F π)XiGYi

)(Xk−1∑
i=0

γi(F π)iRπ
F + γXk(F π)Xk−1

Yi−1∑
i=0

γiGiRπ
G

))

≈E

( ∞∑
k=1

γτ(k)+υ(k)(F π)τ(k)−1

(
Xk−1∑
i=0

γi(F π)iRπ
F + γXk(F π)Xk−1

Yi−1∑
i=0

γiGiRπ
G

))
.
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When the value function is estimated from data using TD-learning, we can

analyze the bias and variance of this estimate by considering that all the model

component estimates are affected by noise components. The estimate of the value

function, V̂ π can be broken up into two components; the first component ignores

rare events, and the second takes rare events into account. The first component is:

E
(
V̂ π
F

)
= E

( ∞∑
k=1

γτ(k)+υ(k)(F π + F̃ π)τ(k)−1

Xk−1∑
i=0

γi(F π + F̃ π)i(Rπ
F + R̃π

F )

)

=
∞∑
k=1

E

(
γτ(k)+υ(k)(F π + F̃ π)τ(k)−1

∞∑
i=0

(1− ε)iεγi(F π + F̃ π)i(Rπ
F + R̃π

F )

)
,

where R̃π
F and F̃ π represent noise in our estimates of Rπ

F and F π respectively.

The bias and variance of this estimate can be derived directly as in Mannor

et al. (2007), noting that τ(k) and υ(k) are sums of independent geometrically

distributed variables, and are therefore distributed according to a negative

binomial distribution.

The second component is:

E
(
V̂ π
G

)
=E

( ∞∑
k=1

γτ(k+1)+υ(k)(F π + F̃ π)τ(k+1)−1

Yk−1∑
i=0

γi(G+ G̃)i(Rπ
G + R̃π

G)

)

=
∞∑
k=1

E

(
γτ(k+1)+υ(k)(F π + F̃ π)τ(k+1)−1

∞∑
i=0

(1− ε)εiγi(G+ G̃)i(Rπ
G + R̃π

G)

)
,

where R̃π
G and G̃ represent noise in our estimates of RG and G respectively.

Note that the noise components G̃, F̃ π, R̃π
G depend on the number of transi-

tions observed in the environment. If we observe N transitions, then the expected

number of observed transitions according to F π is (1 − ε)N and the expected
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number of transitions according to G is εN . Hence, we assume that the noise

components F̃ π and R̃π
F are negligible compared to G̃, and R̃π

G.

To establish bias-variance estimates for V̂ π
G , we need to look at

E
(

(G+ G̃)(Rπ
G + R̃π

G)
)
.

Similarly to Mannor et al. (2007), we assume that E
(
G̃
)

= 0 and E
(
R̃π
G

)
=

0. Hence, the remaining term which will determine the bias and variance is

E
(
G̃R̃π

G

)
, which captures the correlations between the transition and model

estimates, due to the fact that they are estimated from the same samples. This

expectation can be derived directly from the formulas in Mannor et al. (2007).

Note that we could also have applied the analysis of Mannor et al. (2007)

directly to P π. However, this would lead to very loose bounds, because their

results depend on the inverse of the minimum number of samples obtained for

any transition, and we expect that there will be very few transitions into the rare

event set. In our analysis, only the second term depends on numbers of transitions

into the rare events states, so we can focus our analysis on the effect of the rare

events on the bias and variance in our estimates. Therefore, we can expect tighter

bounds, and better confidence intervals by estimating the variance in the estimates

of F π and G separately.

Also, as previously noted, the purpose of the algorithm is to sample rare

events proportionately to their contribution to the value function for all states.

Hence, intuitively, it will reduce bias and variance in the second component by

oversampling the rare events, and thus decrease the noise components G̃ and R̃π
G.
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Given the same amount of data, the errors in F̃ π and R̃π
F will increase, but not by

much.

4.2 Convergence Rates of REASA

Without making further assumptions on f and g, very little can be said in

general about the rate of convergence of REASA. The previous section showed

that in MDPs with rare events, sampling according to the optimal sampling

distribution decreases the variance of our estimator, and in general this implies

that we can expect our convergence rates to improve.

The difficulty is that in standard adaptive importance sampling, the sampling

distribution has the Markov property, that is the sampling distribution at a

time step only depends on the sampling distribution at the previous time step.

This is due to the fact that the sampling distribution is a function of the current

value function estimates, and the current value function estimates are updated

at each time step by generating a trajectory according to the current sampling

distribution. As such, the sampling distribution forms a Markov chain with an

absorbing state (the zero-variance distribution). Therefore it has an invariant

measure 0, and under a few basic assumptions, it can be shown that this invariant

measure is unique. In general, Markov chains on probability distributions converge

to their invariant measure at an exponential rate, and so in general, it can be

expected that the sampling distribution will converge to the zero-variance sampling

distribution at such a rate. This is the typical argument behind the exponential

convergence rates for adaptive importance sampling schemes (Kollman, 1993;

Kollman et al., 1999).
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However, our rare event parameter does not have the Markov property. The

current rare event parameter is a function of the current value function estimates,

but our updates to the value function at each step depend not only on the rare

event parameter, also on the current state. We could modify REASA to only do

Monte Carlo updates at the end of each episode, and our rare event parameter

would have the Markov property, but we then lose the advantages of TD-learning,

and we can no longer consider infinite-horizon problems.

Even if we did have a rare event parameter that evolved according to a

Markov chain, due to variance in the value function estimates for f and g, which

remains even when sampling with the optimal rare event parameter, there is no

absorbing state. However, if we assume that the variance of our value function

estimates are bounded, which is a fairly modest assumption, then the rare event

parameter would have a stationary distribution.

In practice, we observe that the rare event parameter tends to converge to

the optimal value very quickly, and then oscillates around the optimal value.

Quantifying this convergence rate is, however, nontrivial.
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CHAPTER 5
Experiments

We evaluate the performance of REASA on two different domains, small

randomly generated Markov chains, and a large network planning domain. For the

random Markov chain domain, we compare the performance of tabular REASA to

ASA and on-line TD(λ), and show that REASA and ASA both outperform TD(λ),

and REASA performs as well as ASA despite not having knowledge of the model.

The network planning domain is based on a problem posed by Hobbs and Bell

(2002), where we are given a set of cities and a set of traffic demands, and the goal

is to build a network to deliver the traffic.

5.1 Random Markov Chains

We first compare the performance of REASA to on-line TD(λ) and ASA on a

testbed of randomly generated Markov chains. Each environment contains 10 regu-

lar states s0, . . . , s9 and one rare event state δ. Each regular state can transition to

δ with probability ε = 0.001, and to seven other regular states (chosen randomly)

with probabilities drawn from a uniform distribution, normalized to sum to 1 − ε.
The rewards for transitioning between the regular states and from the rare event

state to the regular states are drawn from a normal distribution with mean 1.0

and standard deviation 0.5, with negative values being discarded so that we can

run ASA. The rewards for transitioning to the rare event state are drawn from a
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Figure 5–1: Value function estimate and Root MSE for state s0 in Random
Markov chains

normal distribution with mean 10/ε and standard deviation 1/ε. The initial state

is s0, and the discount factor is γ = 0.7.

In the following results, a step is considered to be one transition for both ASA

and REASA, but for TD(λ), a “step” actually consists of 2300 real time steps. We

chose this number of steps so that the probability of observing at least one rare

event transition in each episode is approximately 0.9. Therefore, we put TD(λ)

at a significant advantage in terms of the number of samples that it is provided.

In Figure 5–1a we plot the estimate for the value function at the initial state

over time, averaged across 70 independent runs. We use a value of λ = 0.7. The

learning rates are on a decreasing schedule where we initially set α = α0 and then

halve the value of α at time steps T , 2T , 4T ,8T ,. . . . The values of α0 and T were

tuned individually for each algorithm. Figure 5–1b shows the root mean squared

error for the value function estimate at the initial state, again averaged across 70

independent runs.
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The learning and error curves for REASA and ASA are nearly indistinguish-

able, and both outperform TD(λ). We note that in the case of ASA, the original

transition probability distribution is needed, and the algorithm has full control

over the transition probabilities that are used in the simulation (an unlikely case

in many practical applications). We observe that despite the fact that REASA

can only know and control the rare event probability, it performs nearly as well as

ASA.

5.2 Network Planning

In order to demonstrate REASA in a practical setting with a large state

space, we use a network planning task in which a reinforcement learning agent

has to build and maintain a telecommunications network linking a number of

North American cities. Each pair of cities has a certain traffic demand, ranging

from 3GBs1 to 60GBs initially, and this demand grows stochastically at a rate of

approximately 3% per year. The goal is to design and build a network topology in

order to meet the traffic demands by placing links between pairs of cities. Links

consist of bundles of fiber optic cables, and each fiber can carry a specific unit

of bandwidth. Building a link between a pair of cities incurs a large one-time

cost of $500k/mile. Once a link has been built, the capacity of the link can be

increased by activating fibers, in units of 25GBs; this incurs a cost of $30k/mile.

1 We use GBs to represent an average sustained traffic rate of 1 gigabyte per
second; because the time interval under consideration is always roughly the same,
we also use it as a unit of traffic, with an abuse of notation.
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The revenue from traffic is generated daily: traffic delivered generates a reward of

$1k/GBs/mile, and undelivered traffic is penalized at a rate of $200k/GBs/mile

every hour. Each episode consists of a 10 year period, with discrete time steps

representing a single day, for a total of 3650 steps per episode (we ignore leap

years)2 .

Link failures occur with a small probability, completely severing a link for a

short period of time. Without considering link failures, a minimum spanning tree

(MST) could be built, with enough activated fibers to carry the traffic. However,

in such a network, any link failure would disconnect the network, which would lead

to undelivered traffic and a high penalty. Hence, link failures in a network that

lacks robustness are rare events according to our definition. On each day, each

link goes down with probability 1/1460, or approximately once every four years.

When a link fails, it remains down for a random amount of time that is normally

distributed with a mean of 12 hours and standard deviation of 2 hours. In a tree

network with 10 nodes and 9 links, this is equivalent to seeing at least one link fail

with probability of approximately 0.00896 each day during a 10 year simulation

period; this is our rare event probability.

Algorithm 3 contains the high-level description of the steps in the networking

simulation. The algorithm begins by initializing the network, which consists of

2 As we are using data provided by an American company, the units are in
miles. In order to maintain consistency, we will continue to use miles for quanti-
ties based on these data, and note that 1 mile is approximately 1.61 km.
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setting the locations of the nodes, any initial links, and the initial traffic. The

algorithm then iterates a sequence of steps for each day in the simulation. Our

simulations last 10 virtual years, or 3650 virtual days, as we ignore leap years. The

CalculateLinkFailures method simulates the link failures by taking the network

as input and returning a copy of the network with link failures that are determined

according to a given link failure probability. After the link failures are determined,

the agent is presented with the current state of the network, and chooses its

actions. This process is encapsulated in the GetAgentAction method. Next, the

SimulateTraffic method is called, which simulates the network traffic for a single

day, restoring the links whose failure times have run out, and returns the reward

r1 that represents the profit, or loss, from the network. After the network has been

simulated for one day, the agent’s actions are performed by the PerformAction

method, which returns the new network updated with any upgrades or new links

that the agent has chosen, as well as the cost r2 of performing the actions. We

calculate the total reward by adding r1 and r2, and then provide the agent with

the reward using the method AgentHandleReward, which allows the agent to

observe the updated state of the network, and the reward generated on the current

day. The AgentHandleReward method contains the necessary logic for updating

the value function of the agent based on its performance. Finally, at the end of

each iteration, the traffic demands are increased by the UpdateNetworkTraffic

method.

The instance of the network planning problem that we consider was first

presented by Hobbs and Bell (2002) and reinforcement learning approaches to the
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Algorithm 3 Network Planning Problem
Initialization: Initialize network N .
For each day from 0, . . . , 3650:

1. N ← CalculateLinkFailures(N).
2. a← GetAgentAction(N).
3. (N, r1)← SimulateTraffic(N).
4. (N, r2)← PerformAction(N, a).
5. r ← r1 + r2.
6. AgentHandleReward(N, r).
7. N ← UpdateNetworkTraffic(N).

problem were studied by Precup (2002) and Vigeant (2007). The network planning

task is similar the problem of network formation games that has been studied in

the context of game theory. A good overview of general network formation games

was presented by (Jackson, 2003), and Altman et al. (2006) studies network games

in the specific context of telecommunications networks. What makes the network

planning task difficult is that the problem is combinatoric; the number of segments

of the network increases proportional to the square of the number of cities. The

problem is further compounded by the addition of a time component, and by the

fact that link failures lead to high variance for simulation-based techniques. The

action space can be infinite, and is difficult to represent in a manner that is simple

to implement, yet rich enough to build arbitrary networks.

Both Hobbs and Bell (2002) and Precup (2002), consider a simplified version

of the task without link failures. In their work, the focus is on ways to reduce the

dimensionality so that the approaches could scale up to larger networks. Nodes

are clustered geographically, using fuzzy clusters, such that every node has non-

zero membership in every cluster. The states are represented by the amount of
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bandwidth in each cluster, calculated by taking the average bandwidth on each

segment, weighted by the membership of it’s endpoint nodes in the cluster. The

actions are to increase the capacity in a specific cluster, and the result of taking an

action on a cluster is that a pair of cities within the cluster is selected randomly,

with probability related to the membership of the cities in the cluster, and a

link was built between the cities, or if a link existed, it was upgraded. Therefore,

the effect of an action is stochastic, and so even under a fixed, deterministic

policy, the resulting network topology could vary greatly from run to run. This

led to high variance in the value function estimates, and the results were quite

poor. Vigeant (2007) presented a number of RL-based approaches, allowing the

agent to make more precise changes to the network. These methods performed

well on the 10 node network, but required large amounts of computation time.

For our experiments, we re-implemented the simulator using slightly different

parameters, and so our results cannot be directly compared with previous results.

In addition, for the control task we also consider a larger 26-node network in order

to demonstrate the scalability of our algorithm.

5.2.1 Policy Evaluation

First, we tested the REASA algorithm for policy evaluation on a network with

10 nodes. The traffic demands are based on real data provided by a telecommu-

nications company (Hobbs and Bell, 2002). We implemented a network planning

agent with a simple heuristic policy, which starts with a spanning-tree network,

shown in Figure 5.2.1, and then monitors the links, adding capacity when the

utilization of a link reaches 90%. The agent does not build new links, and so the
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network structure remains the same throughout the course of the simulation. We

use REASA and TD(λ) to estimate the value of this policy. Clearly, in a tree net-

work, link failures will be catastrophic, and so we expect TD(λ) will require much

more data in order to provide a good estimate for the policy, as the time required

to observe a sufficient number of link failures is large. REASA, on the other hand,

has the ability to increase the rate of the link failures, and so we expect that it will

provide a better estimate in fewer steps. The state space consists of information

regarding the existing links, the number of fibers active on each link, the traffic

demand between each pair of cities, the utilization of each link, any link failures

that are occurring, and other properties. Because the state space is large, we

represent the network state as a vector of binary features, and use linear function

approximation to represent the value function. In order to cope with the high

dimensionality, we use a fairly coarse state representation, consisting of: 45 binary

features indicating whether each of the possible links have been built; 45 binary

features indicating, for each possible link, whether the link is in a failure state;

and the percentage utilization of each link, partitioned into 4 bins: [0], (0, 0.6],

(0.6, 0.9], and (0.9, 1.0]. For our 10 node network, this corresponds to 270 binary

features plus an additional bias feature.

We use a discount factor of 0.95 and we set λ = 1.0. We use a decaying

schedule for the learning rate parameter α, starting with a value of α0 = 2−15 for

T = 100 episodes, then using α0/2 for 2T episodes, α0/4 for 4T episodes, etc. We

note that α0 is small due to the fact that the rewards often have large magnitude

and can vary between −107 and 105. These parameters were specifically tuned to
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Figure 5–2: 10-node spanning-tree network used for policy evaluation experiments
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Figure 5–3: Value function estimates and rare event sampling parameter estimates
for the tree network

this task. In the following results, an episode consists of a simulated 10-year time

span, with each time step corresponding to 1 day.

In Figure 5–3a, we show the value estimates for the initial state, over the first

2000 episodes. We see that REASA converges quickly, while the TD(λ) estimates

have high variance and converge quite slowly. On longer runs, the TD(λ) estimates

do converge to the same value as REASA. In Figure 5–3b, we show the rare event

sampling parameter estimates ε̂ over the first 10000 episodes. After 10000 episodes,
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REASA estimates the optimal failure probability to be 0.155, which in a tree

network with 9 links corresponds to each link going down approximately every

54 days; this is quite far from the original failure probability of once every 1460

days3 .

The rate of convergence is crucial for applications such as the network task.

Each episode corresponds to a simulated 10 year period, and these simulations

are computationally expensive to run, because on each day, a routing algorithm

has to be run to determine the reward. Hence, the gains obtained by REASA are

significant.

5.2.2 Policy Optimization

For the control task, we integrated REASA into the standard SARSA(λ)

algorithm (Sutton and Barto, 1998), which for the purpose of this section we

will still refer to as REASA. We evaluated the performance of REASA on two

networks, the 10-node network from Hobbs and Bell (2002) that was used in the

previous section, and a 26-node network based on publicly available data on the

AT&T IP backbone network from 2Q2000, which was studied by Maxemchuk et al.

(2005).

The state was represented using linear function approximation with the same

features as in the previous section. This corresponds to 271 binary features for

3 Although the value function estimates effectively converged after the first 2000
episodes, we allowed the agent to continue to run in order to allow the ε̂ parameter
estimate to converge as well.

58



the 10-node network, and 1950 for the 26-node network. For the actions, we chose

to have one action for each possible link, where an action corresponds to either

building the link if it does not exist, or upgrading the link if it does exist, and

one additional action which represents making no change to the network. This

corresponds to 46 actions for the 10-node network, and 326 actions for the 26-node

network. Therefore, at each step, the agent is only able to make a single change

to the network. We would therefore expect the network to be built slowly, and

so a large negative reward will be accumulated early in the episode, before the

network is connected. Ideally, then, our agent will not only learn to design a

network that is robust to link failures, but it will learn a policy to build a network

from scratch such that important traffic is delivered early in the building process.

Such a strategy would be important for, say, a telecommunication company that is

entering a new market. The company may have limited resources, and only have

the ability to build up its network incrementally, and such an agent would be able

to choose where to place links to generate the highest revenue the fastest.

With such a large action space, exploration becomes a challenge. Also in

early experiments we found that since taking actions early in the episode are

so important, the agent initially assigns a much lower value to the action which

makes no change to the network than to all other actions. This leads to the agent

always wanting to make changes to the network, even once a good network has

been built. To assist the agent in learning when to stop building, we consider

two higher-level actions, one which makes some change to the network, the “do

something” action, and the second, which makes no change to the network, the
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Figure 5–4: Learning curves and standard deviation for REASA and SARSA on
the 10-node network

“do nothing” action. On each time step, the agent first decides with to “do

something”, in which case it then chooses a primitive action from the set of actions

that make changes to the network, or “do nothing”, in which case it chooses the

primitive action that makes no changes to the network. We found that adding

this high-level decision greatly improved the performance of the agent. For both

the primitive and high-level actions, we use Boltzmann exploration, with the

temperature schedule tuned for the specific network.

For the 10-node network, we use the decaying learning rate schedule described

in the previous section with α0 = 2−5 and T = 125. We set λ = 0.9 and γ = 0.995.

We use the same temperature schedule for the Boltzmann exploration for the

high-level and primitive actions, with temperature τ = 50.0/
√
t+ 1, where t is

the current episode. We compared REASA to standard SARSA, using the same

parameters. The learning curves are shown in Figure 5.2.2. What should be

immediately apparent from the learning curves is that the performance of REASA

and SARSA are nearly identical. REASA exhibits only slightly lower variance.
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Figure 5–5: Example 10-node network built by REASA learning agent

The reason for this is that in the control problem, the learning agent spends very

little time considering networks in which failures are rare events. Learning seems

to proceed in two stages, first the agent learns to grow very large networks, and

then it learns to prune them down to a reasonable size. When the network is

highly connected, network failures do not result in traffic loss, and therefore have

no noticeable effect on performance. Therefore, tuning our rare event parameter

has no effect on the learning rate. An example of a network built by REASA is

shown in Figure 5.2.2, and we see that the agent has learned to build networks

with redundant routes to avoid traffic loss in the event of link failures.

For the 26-node network, we use parameters λ = 0.9, γ = 0.995, α0 = 2−5, and

T = 100. For the Boltzmann exploration temperature, we use τ = 101.0/(t + 1)0.7,

where t is the current episode, for both the high-level and primitive actions. For

a baseline, we use the AT&T network (shown in Figure 5–7a), and created an

agent that would assemble the network one piece per time step, choosing the next

link to build uniformly randomly from the links that have not yet been built.

Since this network represents the actual backbone network that AT&T employed,
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it is reasonable to assume that this network was designed by experts, and so

this represents as near an optimal network as we could expect to see. Because

of the stochastic nature of the heuristic agent, we ran 1000 independent 10-year

simulations, and took the average value for the baseline. For REASA, we use the

reward averaged over 10 independent 10-year simulations. Figure 5.2.2 shows the

learning curve and error bars, and Figure 5–7b. REASA does not quite achieve the

same performance as the heuristic, but it comes fairly close. This is a significant

result, in that to our knowledge, this is the largest network that has been designed

completely by a learning agent equipped with no domain knowledge, and the

performance of the network is nearly 90% of that of a network designed by domain

experts. This performance statistic was calculated using the average of the last

1000 episodes of each of the 10 independent runs. The time required for each

individual run on a 3.0GHz Pentium 4 was approximately 716.5 hours, or just

under 30 days.

We note that the algorithm is fairly robust to parameter settings. The most

important, and most difficult parameter to tune is the exploration temperature.

The parameter settings that we used were fairly naive, and so it is likely that even

better performance could be obtained by tuning these parameters.

It is unfortunate that REASA did not lead to significant performance gains

over SARSA. As we noted earlier, this is due to fact that during the learning

process, the events that we originally identified to be rare events, link failures, do

not turn out to fit our definition or rare events because they do not significantly

affect the value function estimates. It is likely that there are other domains in
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which rare events play a factor during the learning process, but we leave such

investigation for future work.
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CHAPTER 6
Conclusions and Future Work

We conclude with a review of the contributions made in this work, and a

discussion of future research directions.

6.1 Contributions

In this thesis, we deviate from the typical approach taken by researchers in

RL. In most applications of RL, the simulated environment is treated as a black

box that generates samples, and the focus is on improving the performance of the

agent. However, the simulated environment is typically a software application, and

there are usually parameters that can be modified, leading to different behaviours.

If we are aware of the effect of changing these parameters, then we can do so and

still obtain agents that perform well on the original problem. In certain scenarios,

such as the rare events scenario that we consider in this work, changing the

parameters can improve the performance of the learning agent. We present a novel

algorithm, based on adaptive importance sampling, that improves the performance

of reinforcement learning agents in environments where rare significant events

occur. The performance improvements have been empirically demonstrated for

policy evaluation, but we found that for the specific network planning task that we

considered, there were no improvements in the control case.

This should not be seen as implying that our methods cannot improve

performance for policy optimization problems, only that the network planning task
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is no an appropriate task for these kinds of methods. As we noted in Section 5.2.2,

for the network planning task, most of the learning is done in a part of the state

space where there are no rare events, and so it is unsurprising that our algorithm

does not lead to improved performance. On the other hand, our method of

splitting the actions into a high-level action and primitive actions, and performing

action selection in two phases led to an algorithm that could design very good

networks with a reasonable number of nodes1 . To the best of our knowledge of the

available literature, we have presented the largest network that has been built from

scratch by a learning agent with no prior domain knowledge.

6.2 Future Research Directions

As we noted in the previous section, this work focuses on improving the

performance of a reinforcement learning agent by exploiting properties of the

simulated environment. We focused on the specific problem of rare events, and

incorporated techniques from the stochastic simulation community, where rare

events have been widely investigated, into a learning algorithm. By assuming that

we have some control over the simulator, which is generally the case, this opens

the door to a whole new area of research. We looked at rare event simulation, but

there are many other variance reduction techniques from the stochastic simulation

literature that can be applied.

1 This approach was suggested by Doina Precup, based on her previous work on
the network planning task.
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One obvious extension to this work would be to consider other types of

parameterized transition distributions. We looked at the case where the parameter

at our disposal controlled the probability of rare events occurring in a system.

However, there are many other cases of parameterized transition probabilities.

For example, in the standard mountain-car problem (Sutton and Barto, 1998), we

could take the slope of the valley as a parameter, and then consider whether an

agent may be able to improve its performance by altering this parameter. The idea

of learning on easier problems and then transferring the knowledge to other, harder

problems is an area of active research (Singh, 1992; Madden and Howley, 2004;

Taylor and Stone, 2005), called transfer learning, and our approach may be useful

in that area.

Our approach also assumes that rewards are deterministic, as is consistent

with most work on adaptive importance sampling. Without this assumption, it

cannot be assumed that it is always best to sample transitions proportionally to

their contribution to the value function. When the rewards are stochastic, it may

also be important to consider the variance of the rewards. This is similar to the

work on upper confidence bounds (UCB) and the multi-armed bandit problem

(Auer, 2002; Even-Dar et al., 2006). It is likely that much of the work on UCB can

easily be adapted to our approach, allowing the sampling procedure to incorporate

a measure of uncertainty.

Finally, we note that for the function approximation case, we are restricted to

having only one estimate for our rare event parameter, which is used independent

of the current state. If we are able to represent the rare event probability as a
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linear function of our state features, then we would be able to lift this assumption.

Gradient descent could then be used to learn a set of weights for representing not

only the value function, but the optimal rare event parameter as well, similar to

what is done in the tabular case. This is likely to greatly improve the performance

of the algorithm when used with linear function approximation.
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APPENDIX A
General Notation

A.1 Probability and Random Variables

Let Ω denote a possibly infinite sample space, whose elements ω are called

sample outcomes or realizations. We denote the complement of a set A as Ac,

and the empty set as ∅. Subsets of Ω are called events, and we restrict ourselves

to a set of events called a σ-field, which is a class A that satisfies: ∅ ∈ A, if

A1, A2, · · · ∈ A then ∪∞i=1Ai ∈ A, and A ∈ A implies that Ac ∈ A. Elements of A
are said to be measurable. A function P that assigns a real number P (A) to each

measurable event A a probability distribution or probability measure if it satisfies:

P (A) ≥ 0 for every A, P (Ω) = 1, and if A1, A2, . . . are disjoint, then

P

( ∞⋃
i=1

Ai

)
=
∞∑
i=1

P (Ai) .

We call (Ω,A) a measurable space, and if P is a probability measure defined on A,

then (Ω,A,P) is called a probability space.

A random variable X is a measurable map X : Ω → R, where measurable

means that for every x, {ω : X(ω) ≤ x} ∈ A. X is discrete if it takes countably

many values, and continuous otherwise. For a discrete random variable X, we

define the probability function, or probability mass function fX(x) = P (X = x).

For a continuous random variable X, we define the probability function or prob-

ability density function (PDF) as a function fX such that fX(x) ≥ 0 for all x,
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∫∞
−∞ fX(x)dx = 1, and for every a ≤ b,

P (a < X < b) =

∫ b

a

fX(x)dx.

When it is clear what random variable a probability function is defined for, we

drop the subscript X to ease our notation. In addition, since getting bogged

down in precise measure theoretic details will only serve to make this thesis less

readable, we will often resort to sloppy notation, and refer to f as a probability

distribution, or law, regardless of whether X is continuous or discrete.

A.2 Expectation and Variance

The expected value or mean of a random variable X is defined to be

E (X) =


∑

x xf(x) if X is discrete;∫
xf(x)dx if X is continuous,

where f is a probability function. The variance of a random value with mean µ is

defined to be

σ2
X = E

(
(X − µ)2

)
,

assuming this expectation exists. We also write V (X) to denote the variance of X,

or σ2 when it is obvious which random variable we are referring to. The standard

deviation is sd(X) =
√

V (X), and is also denoted by σX or σ. For random

variables X and Y with means µX and µY and standard deviations σX and σY , we

define the convariance between X and Y as

Cov (X, Y ) = E ((X − µX)(Y − µY )) .
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The covariance between X and Y gives a measure of how strong the linear

relationship is between X and Y .

A.3 Convergence of Random Variables

Let X1, X2, . . . be a sequence of random variables, and let X be another

random variable. We say that Xn converges to X (written Xn → X) in probability

if, for every ε > 0,

lim
n→∞

P (|Xn → X| > ε) = 0.

We say that Xn → X almost surely (a.s.), or with probability 1 (w.p.1), if

P
(

lim
n→∞

Xn = X
)

= 1.

A.4 Markov Chains

A Markov chain is a stochastic processes possessing the Markov property,

which says that given the present state, the future states are independent of

the past states. We represent a Markov chain as a sequence of random variable

X1, X2, . . . , sometimes written as (Xi)
∞
i=1, or (Xi)

n
i=1 if the sequence is finite.

The set of possible values of Xi is referred to as the state space, which we denote

by X , and the process evolves according to a single step transition probability

distribution p, where the probability of going from state x to state y is given by

pxy = P (Xn+1 = y|Xn = x) .

We define the probability of going from state x to state y in n steps as

p(n)
xy = P (Xn = y|X0 = x) .
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A Markov chain is time-homogeneous if p does not change over time. For Markov

chains with countable state spaces, or finite state spaces of size N , it is often useful

to label the states using the natural numbers, or elements of the set {1, 2, . . . , N}
respectively. For Markov chains with finite state spaces, we can represent the

transition probability distribution by a matrix P = (pxy : x, y ∈ X ), called the

transition matrix, whose (x, y)th entry is pxy. For time-homogeneous finite Markov

chains, the k-step transition probabilities can be calculated as P k.

A state y is said to be accessible from x if there exists an integer n ≥ 0 such

that p
(n)
xy > 0. Two states x and y are said to be communicating if y is accessible

from x and x is accessible from y. A communicating class C ⊆ X is a set of states

where every pair of states in C communicates and no state in C communicates with

a state outside of C. A Markov chain is said to be irreducible if its states X form a

communicating class.

The period of a state is defined as k = gcd {n : P (Xn = x|X0 = x) > 0},
where gcd is the greatest common divisor. This means that if a state x has period

k, then the number of steps that occur from one visit to x to the next must be a

multiple of k. If the period k of a state is 1, then that state is said to be aperiodic,

otherwise if k > 1 the state is said to be periodic with period k. A finite state

irreducible Markov chain is said to be ergodic if its states are aperiodic.

A state x is said to be transient if, given that we start in x, there is a non-zero

probability that we will never return to x. A state is called recurrent if it is not

transient. A state x is called absorbing if it is impossible to leave that state, that

is that pxx = 1 and pxy = 0 for y 6= x.
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A vector π is called the stationary distribution, or equilibrium distribution, for

a time-homogeneous Markov chain if its entries πy sum to 1 and satisfy

πy =
∑
x∈X

πxpxy.

For a finite state Markov chain, the stationary distribution π is a row vector

which satisfies π = πP . Since P is a stochastic matrix, π always exists, but is not

necessarily unique. However, if the Markov chain is irreducible and aperiodic, then

the Perron-Frobenius theorem ensures that the stationary distribution π is unique

and satisfies

lim
k→∞

P k = 1π,

where 1 is the column vector with all entries equal to 1. This can be interpreted

as saying that as time goes by, the Markov chain forgets where it began, and

converges to its stationary distribution.
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APPENDIX B
Proofs

B.1 Proof of Theorem 3.2.1

Theorem: Given an MDP with states S, actions A, one-step transition probability

distribution p, and reward function r, the zero-variance importance sampling

distribution p∗ is given by

p∗(s′|s, a) =
p(s′|s, a)

∑
a′∈A π(a′|s′) [r(s, a, s′) + γQπ(s′, a′)]

Qπ(s, a)

Proof: This proof follows a similar form as the derivation of the zero-variance

importance sampling distribution for discrete Markov chains by Kollman (1993).

However, they consider transient Markov chains and undiscounted rewards. We

also fill in a few details that were left out of their proof (namely Lemma B.1.1).

Although a large amount of this proof is nearly identical to the cited proof, we

include it for completeness.

Given a policy π, we consider the discrete Markov chain (Xt)
∞
t=0 of state-

action pairs, where Xt = (st, at), st ∈ S, at ∈ A for all t ≥ 0. s0 is drawn

from an initial state distribution µ, a0 is generated by the policy π(·|s0) and the

state-action to state-action transitions occur according to

p(s′, a′|s, a) = P (st+1 = s′, at+1 = a′|st = s, at = a) = p(s′|s, a)π(a′|s′).
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The discounted return for the chain becomes

Rp =
∞∑
t=1

γt−1r(st−1, at−1, st),

where the subscript p denotes the usage of the distribution p for generating

transitions. The action-value function becomes

Qπ
p (s, a) = Ep (Rp|s0 = s, a0 = a) ,

The state-action transitions can be generated by an alternative transition probabil-

ity distribution q having the same support as p, in which case

q(s′, a′|s, a) = P (st+1 = s′, at+1 = a′|st = s, at = a) = q(s′|s, a)π(a′|s′).

We denote our discounted return for this auxiliary chain

Rq =
∞∑
t=1

γt−1r(st−1, at−1, st)Lt,

where Lt is the likelihood of a trajectory under the alternative dynamics, given by

Lt =
t∏
i=1

p(si, ai|si−1, ai−1)

q(si, ai|si−1, ai−1)
.

We denote the action-value function under the dynamics q as

Qπ
q (s, a) = Eq (Rq|s0 = s, a0 = a) .

Lemma B.1.1. Let Qq and Rq be the state-action value function and expected

return, respectively, under our importance sampling distribution q, and let Qp and

Rp be the state-action value function and expected return, respectively, under the
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original transition distribution p. If the likelihood ratios are finite, that is Lt < ∞
for all t, then

Qπ
q (s, a) = Eq (Rq|s0 = s, a0 = a) = Ep (Rp|s0 = s, a0 = a) = Qπ

p (s, a).

Proof: Let R
(n)
p denote the n-step return under p, given by

R(n)
p =

n∑
i=1

γi−1r(si−1, ai−1, si),

and the R
(n)
q denote the weighted n-step return under q, given by

R(n)
q =

n∑
i=1

γi−1r(si−1, ai−1, si)Li.

We show by induction on n, that

Eq

(
R(n)
q |s0 = s, a0 = a

)
= Ep

(
R(n)
p |s0 = s, a0 = a

)
for all n > 0, s ∈ S, and a ∈ A, thus establishing our result.

For n = 1, let s0 = s and a0 = a, then

Eq

(
R(1)
q |s0 = s, a0 = a

)
=
∑
s′∈S

q(s′|s, a)r(s, a, s′)
p(s′|s, a)

q(s′|s, a)

=
∑
s′∈S

p(s′|s, a)r(s, a, s′)

= Ep

(
R(1)
q

)
.

Define the n step transition probabilities under p and q respectively as

p(n)(st, at|s0, a0) =
∑
s1,...,st
a1,...,st

n∏
i=1

π(ai|si)p(si|si−1, ai−1),
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and

q(n)(st, at|s0, a0) =
∑
s1,...,st
a1,...,st

n∏
i=1

π(ai|si)q(si|si−1, ai−1).

The expected likelihood can then be written as

Eq (Ln|s, a) =
∑
s′∈S
a′∈A

p(n)(s′, a′|s, a)

q(n)(s′, a′|s, a)

=
∑
s′∈S
a′∈A

p(n−1)(s′, a′|s, a)

q(n−1)(s′, a′|s, a)

∑
s′′∈S

p(s′′|s′, a′)
q(s′′|s′, a′) ,

where the last line follows from the Markov property.

Now suppose that for k > 1,

Eq

(
R(k−1)
q |s0 = s, a0 = a

)
= Ep

(
R(k−1)
p |s0 = s, a0 = a

)
,

then by the Markov property and our induction hypothesis we have:

Eq

(
R(k)
q |s0 = s, a0 = a

)
= Eq

(
R(k−1)
q |s0 = s, a0 = a

)
+ γk−1

∑
u∈S
v∈A

q(k−1)(u, v|s, a)
∑
s′∈S
a′∈A

q(s′|u, v)r(u, v, s′)

· p
(k)(s′, a′|s, a)

q(k)(s′, a′|s, a)

= Ep

(
R(k−1)
p |s0 = s, a0 = a

)
+ γk−1

∑
s′∈S
a′∈A

p(k−1)(s′, a′|s, a)
∑
s′′∈S

p(s′′|s′, a′)r(s′, a′, s′′)

= Ep

(
R(k)
p |s0 = s, a0 = a

)
.
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Since the value functions do not depend on the transition distribution, we can

drop the subscript, and write Qπ(s, a). Let vsa = V (Rq|s0 = s, a0 = a) denote the

variance of the expected reward Rq.

Lemma B.1.2. By the Markov property,

E (Rq|s0 = s, a0 = a, s1 = s′, a1 = a′) =
p(s′|s, a)

q(s′|s, a)
(r(s, a, s′) + γQπ(s′, a′)) ,

and

V (Rq|s0 = s, a0 = a, s1 = s′, a1 = a′) = γ2

(
p(s′|s, a)

q(s′|s, a)

)2

vs′a′ .

Proof:

E (Rq|s0, a0, s1, a1) = E

( ∞∑
t=1

γt−1r(st−1, at−1, st)Lt|s0, a0, s1, a1

)

= E
(
r(s0, a0, s1)L1

+ γL1

∞∑
t=1

γt−1r(st, at, st+1)
Lt+1

L1

|s0, a0, s1, a1

)
=
p(s1, a1|s0, a0)

q(s1, a1|s0, a0)
[r(s0, a0, s1) + γQπ(s1, a1)] ,

V (Rq|s0, a0, s1, a1) = V

( ∞∑
t=1

γt−1r(st−1, at−1, st)Lt
∣∣∣∣s0, a0, s1, a1

)

= V
(
r(s0, a0, s1)L1

+ γL1

∞∑
t=1

γt−1r(st, at, st+1)
Lt+1

L1

∣∣∣∣s0, a0, s1, a1

)
= γ2

(
p(s1, a1|s0, a0)

q(s1, a1|s0, a0)

)2

V (Rq|s1, a1) .
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Lemma B.1.3. The variance of the expected reward under the importance

sampling distribution q is

vsa =
∑
a′∈A
s′∈S

π(a′|s′)p(s′|s, a)2 [r(s, a, s′) + γQπ(s′, a′)]2

q(s′|s, a)
−Qπ(s, a)2

+ γ2
∑
a′∈A
s′∈S

π(a′|s′)p(s′|s, a)2

q(s′|s, a)
vs′a′ ,

Proof:

vsa = V (Rq|s0 = s, a0 = a)

= V (E (Rq|s0, a0, s1) |s0 = s, a0 = a) + E (V (Rq|s0, a0, s1) |s0 = s, a0 = a)

= V
(
p(s1, a1|s0, a0)

q(s1, a1|s0, a0)
[r(s0, a0, s1) + γQπ(s1, a1)]

∣∣∣s0 = s, a0 = a

)
+ E

(
γ2

(
p(s1, a1|s0, a0)

q(s1, a1|s0, a0)

)2

V (Rq|s1, a1)
∣∣∣s0 = s, a0 = a

)

= E

((
p(s1, a1|s0, a0)

q(s1, a1|s0, a0)

)2

[r(s0, a0, s1) + γQπ(s1, a1)]2
∣∣∣s0 = s, a0 = a

)

− E
(
p(s1, a1|s0, a0)

q(s1, a1|s0, a0)
[r(s0, a0, s1) + γQπ(s1, a1)]

∣∣s0 = s, a0 = a

)2

+ E

(
γ2

(
p(s1, a1|s0, a0)

q(s1, a1|s0, a0)

)2

V (Rq|s1, a1)
∣∣∣s0 = s, a0 = a

)

=
∑
a′∈A
s′∈S

(p(s′|s, a)π(a′|s′))2 [r(s, a, s′) + γQπ(s′, a′)]2

q(s′|s, a)π(a′|s′) −Qπ(s, a)2

+ γ2
∑
a′∈A
s′∈S

(p(s′|s, a)π(a′|s′))2

q(s′|s, a)π(a′|s′) vs′a′ .
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Let N = |S × A|, and denote as v the N element vector with entries vsa. If we

define f to be the N element vector with entries defined by

fsa =
∑
a′∈A
s′∈S

π(a′|s′)p(s′|s, a)2 [r(s, a, s′) + γQπ(s′, a′)]2

q(s′|s, a)
−Qπ(s, a)2,

and define R to be the N ×N matrix whose (sa, s′a′)th element is given by

rsas′a′ = γ2
∑
a′∈A
s′∈S

π(a′|s′)p(s′|s, a)2

q(s′|s, a)

(with 0/0 = 0 is defined), then in matrix form the variance equation becomes

v = f + Rv. (B.1)

We now show that Equation B.1 has a unique solution.

Lemma B.1.4. v =
∑∞

n=0 Rnf .

Proof: First we note that any v that satisfies Equation B.1 must also satisfy

v =
n−1∑
i=0

Rif + Rnv,

for all n > 0, and so v̂ =
∑∞

n=0 Rnf is the minimal solution to Equation B.1.

Let

R(n)
q =

n−1∑
i=0

γir(si, ai, si+1)Li + γnQ(sn, an)Ln,

and note that Eq

(
R

(n)
q |s0 = s, a0 = a

)
= Q(s, a).
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Let v(n) denote the vector with elements v
(n)
sa = V

(
R

(n)
q |s0 = s, a0 = a

)
, then

using an analogous argument as before, we see that

v(n) = f + Rv(n−1),

for all n > 0.

By induction,

v(n) =
n−1∑
i=0

Rif ,

and by Fatou’s Lemma and the fact that Rq = limn→∞R
(n)
q , we have that

v ≤
∞∑
n=0

Rnf = v̂.

Since v̂ is the minimal solution to Equation B.1, we must have that v = v̂.

Finally, we show that for a specific choice of sampling distribution q, we get

f = 0.

Lemma B.1.5. If we let

q(s′|s, a) =
p(s′|s, a) [r(s, a, s′) + γV π(s′)]

Qπ(s, a)
,

then if γ > 0, we get f = 0.

Proof: If we let

q(s′, a′|s, a) = q(s′|s, a)π(a′|s′) =
p(s′|s, a)π(a′|s′) [r(s, a, s′) + γQπ(s′, a′)]∑
u∈S
v∈A

p(u|s, a)π(v|u) [r(s, a, u) + γQπ(u, v)]

=
p(s′|s, a)π(a′|s′) [r(s, a, s′) + γQπ(s′, a′)]

Qπ(s, a)
,
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then for all s ∈ S, a ∈ A

fsa =
∑
a′∈A
s′∈S

(p(s′|s, a)π(a′|s′))2 [r(s, a, s′) + γQπ(s′, a′)]2

q(s′|s, a)π(a′|s′) −Qπ(s, a)2

= Qπ(s, a)
∑
a′∈A
s′∈S

p(s′|s, a)π(a′|s′) [r(s, a, s′) + γQπ(s′, a′)]−Qπ(s, a)2

= Qπ(s, a)2 −Qπ(s, a)2 = 0.

Therefore, this choice of q gives us f = 0, and then from Lemma B.1.4 we

have that v = 0, giving us a zero-variance importance sampling scheme, and thus

completing our proof.

B.2 Proof of Theorem 3.2.2

Theorem: Using Algorithm 1 with the usual step-size conditions on α, αT , and

αU , for any λ ∈ [0, 1] that does not depend on the action at, and assuming that the

MDP is unichain for ε = δ, we have that:

V̂ π(s)→ V π(s) almost surely.

Moreover, for all s ∈ S, ε̂(s)→ ε̃(s) almost surely.

Proof: We start by noting that for a given stationary policy π, REASA without

eligibility traces is a special case of the ASA algorithm, which is known to converge

(see Ahamed et al., 2006, Theorem 1). Although the sampling probabilities in

REASA do not necessarily converge to the zero-variance distribution, as they

do in ASA, this property of the sampling distribution is not used in the ASA
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convergence proof. The only requirement is that the importance sampling weights

are bounded, and the parameter δ ensures that they are. Therefore, we can use

their result without modification.

We therefore need to show that adding eligibility traces allows us to retain

our convergence guarantees. This follows from a straightforward adaptation of the

second part of the proof of Theorem 2 of Precup et al. (2000).

The weighted n-step return under REASA without eligibility traces is given

by:

R
(n)
t =

n∑
i=1

γi−1rt+i

t+i−1∏
l=t+1

wl + γnV (st+n)
t+n−1∏
l=t+1

wl,

and the eligibility trace for state s at time t can be re-written as:

et(s) =
t∑
i=0

(γλ)t−tm
t−1∏
l=i

wl,

where tm is time step at which we last visited state s, given by

tm = sup
i
{i < t|si = st} .

If we have never visited state s at any time step prior to t, then et(s) = 0. From

our unichain assumption, the parameter δ, and the use of replacing traces, we

ensure that the eligibility traces remain bounded.

Supposing that at time t, we visit state s, and let τ be the next time at which

we visit state s, given by

τ = inf
i
{i > t|si = s} .
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We now show that applying the updates of Algorithm 1 for n ≤ τ successive steps,

we perform the same update as by using the n-step return R
(n)
t .

n∑
i=1

et+i−1(s)∆t+i−1(s) =
n∑
i=1

γi−1

(
t+i−2∏
l=t

wl

)

·
(
wt+i−1(rt+i + γV (st+i))− V (st+i−1)

)
=

τ∑
i=1

γi−1rt+i

t+i−1∏
l=t

wl + γnV (st+n)
t+n−1∏
l=t

wl − V (st)

= R
(n)
t − V (st).

The second claim follows from our definition of ε̂ and our choice of δ.

B.3 Proof of Theorem 3.3.1

Theorem: Under standard stochastic approximation conditions, Algorithm 2

converges in the limit, with probability 1, to the same estimates as the on-policy

TD-learning algorithm.

Proof: The bulk of this proof is a straightforward adaptation of the proofs of

Theorems 1 and 4 from Precup et al. (2001). First we show that the expected

cumulative weighted forward-view updates (Equation 3.7) are equal to the

expected cumulative forward-view updates for conventional on-policy TD(λ).

We then show that the backward-view updates performed in Algorithm 2 are

equivalent to the weighted forward-view updates.

Let ∆θ and ∆θ̂ be the cumulative updates to the parameter vector under

on-policy TD(λ) and our weighted TD(λ) respectively. We begin by showing that

Ep (∆θ|s0 = s) = Eq

(
∆θ̂|s0 = s

)
for all s ∈ S. To simplify the notation, we
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henceforth take it as implicit that expectations are conditioned on s0. Following

the same arguments as in the proof of Theorem 1 from Precup et al. (2001), it

suffices to show that for any n,

Eq

( ∞∑
t=0

(R̄
(n)
t − θTφt)φtw0 · · ·wt

)
= Ep

( ∞∑
t=0

(R
(n)
t − θTφt)φt

)
.

Given a policy π, the probability of a trajectory ω ∈ Ωt(s) under transition

probability p is given by

ρp(ω) =
t−1∏
i=0

p(si+1|si, ai)π(ai|si)

=
t−1∏
i=0

(εg(si+1|si)It + (1− ε)f(si+1|si, ai)(1− It))π(ai|si),

and similarly, the probability of ω under transition probability q is given by

ρq(ω) =
t−1∏
i=0

q(si+1|si, ai, ε̂i)π(ai|si)

=
t−1∏
i=0

(ε̂ig(si+1|si)Ii + (1− ε̂i)f(si+1|si, ai)(1− Ii))π(ai|si),

where It is the indicator function which takes the value 1 if state st+1 ∈ T or 0

otherwise.
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Our expected n-step weighted return can be rewritten as

Eq

( ∞∑
t=0

(R̄
(n)
t − θTφt)φtw0 · · ·wt

)

=
∞∑
t=0

∑
ω∈Ωt

ρq(ω)φt

t∏
k=0

wkEq

(
R̄

(n)
t − θTφt|st

)
(given the Markov property)

=
∞∑
t=0

∑
ω∈Ωt

t∏
j=1

(
ε̂jg(sj+1|sj)Ij + (1− ε̂j)f(sj+1|sj, aj)(1− Ij)

)
π(aj|sj)φt

·
(

t∏
k=1

ε

ε̂k
Ik +

1− ε
1− ε̂k (1− Ik)

)(
Eq

(
R̄

(n)
t |st

)
− θTφt

)
=
∞∑
t=0

∑
ω∈Ωt

t∏
j=1

(εg(sj+1|si)Ij + (1− ε)f(sj+1|sj, aj)(1− Ij))π(aj|sj)φt

·
(
Eq

(
R̄

(n)
t |st

)
− θTφt

)
(using the fact that I2

t = It and It(1− It) = 0)

=
∞∑
t=0

∑
ω∈Ωt

ρp(ω)φt

(
Ep

(
R

(n)
t |st

)
− θTφt

)
(using the result from Proposition 3.2.2)

= Ep

( ∞∑
t=0

(R
(n)
t − θTφt)φt

)
.

That the backward-view description given in Algorithm 2 is equivalent to

the forward-view definition in Equation 3.7 follows directly from the proof of

Theorem 4 in Precup et al. (2001) where we let g0 = 1 and gt = 0,∀t > 0.
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