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Background and Motivation

• Want a flexible way to represent hierarchical knowledge. 
(Options [Sutton, Precup & Singh, 1999])

• Want an efficient way to learn about these hierarchies. 
(Recognizers [Precup et al. 2006])

• Concerned with off-policy learning in environments with 
continuous state and action spaces [Precup, Sutton & 
Dasgupta 2001].
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Terminology

• Option:  A tuple             .     is a set of initiation states,    a 
termination condition, and    a policy.

• Recognizer:  A filter on actions.  A recognizer specifies a 
class of policies that we are interested in learning about.

• Off-policy learning:  We are interested in learning about a 
target policy    by observing an agent whose behavior is 
governed by a different (possibly unknown) policy   . 
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Example Problem

• PuddleWorld [RL-Glue]

- Continuous state space

- Continuous action space

• Goal is to do off-policy learning. Behavior policy is 
unknown.
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Recognizers: Formally

• MDP is a tuple                   .  At time step   , an agent 
receives a state           and chooses an action           .

• Fixed (unknown) behavior policy                            , used to 
generate actions.

• Recognizer is a function                           , where           
indicates to what extent the recognizer allows action    in 
state   .

• Target policy    generated by    and

where        is the recognition probability at   .
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Importance Sampling

• Based on the following observation:

• We are trying to learn about a target policy    using 
samples drawn from a behavior policy   , and so we just 
need to calculate the appropriate weights.

• Weights (also called corrections) given by

• Full details of the algorithm given in Precup et al. (2006).
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Importance Sampling Correction

•        depends on   .

• If    is unknown, we can use a maximum likelihood 
estimate                     .

• For linear function approximation, we can use logistic 
regression with the same set of features in order to 
estimate   .

µ(s) b

µ

b
µ̂ : S → [0, 1]
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Experiment 1: Puddle World [RL-Glue]

• Continuous state space, continuous actions. Movement is 
noisy.

• Positive reward for reaching goal (10), negative reward for 
entering puddle (-10 at middle).

• Start state chosen randomly in small square in lower left 
corner. Reaching goal moves agent back to start state 
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Experiment 1: Setup

• Standard tile coding function approximation for state space.

• Behavior policy picks actions uniformly randomly, target 
policy is to pick actions that lead directly towards the goal 
state.

• Binary recognizer, recognizes actions in a       cone facing 
directly towards the goal state. Recognizer episode can be 
initiated everywhere, and terminates when either goal 
state or puddle are entered.

45◦

9



Recognizers NIPS’07 Workshop on Hierarchical 
Organization of Behavior

Experiment 1: Results
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Learned Reward Model

• This matches our intuition that moving directly towards the 
goal is good unless you are below and to the left of the 
puddle.
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Experiment 1: Results
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• We observe that the recognition probability estimate 
converges to the correct value, and estimating this value as we 
do our learning does not bias our state value estimates.
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Experiment 2: Ship Steering [RL-Glue]

• Stochastic environment. 3D Continuous state space, 2D 
continuous actions (throttle and rudder angle).

• Goal is to keep a ship on a desired heading with a high 
velocity.
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Experiment 2: Setup

• Goal is to demonstrate that we can learn multiple 
recognizers from one stream of experience.

• Behavior policy picks a rudder orientation randomly to 
bring ship towards desired heading.

• 4 recognizers recognize different ranges of motion, from 
small, smooth adjustments to the rudder, to huge, sharp 
adjustments.
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Experiment 2: Results

14

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

2

4

6

8

10

12

14
Way off course and moving slowly

Number of Steps (x 10E8)

Ex
pe

ct
ed

 R
ew

ar
d

 

 

Small Adjustments
Medium Adjustments
Large Adjustments
Huge Adjustments
All Actions Recognized

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

2

4

6

8

10

12

14
Way off course and moving quickly

Number of Steps (x 10E8)

Ex
pe

ct
ed

 R
ew

ar
d

• We can see that policies that make smaller rudder 
adjustments outperform those that make large adjustments.
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Conclusion and Future work

• Recognizers are useful for learning about options when 
we cannot control, or do not know the behavior policy.

• Convergence has been shown for state aggregation, still 
need to work on proofs for function approximation, but 
empirical results are promising.

• More experiments.
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Questions?

• RL-Glue, University of Alberta, http://rlai.cs.ualberta.ca/RLBB/top.html

• Precup, D., Sutton, R.S., and Dasgupta, S. (2001). Off-policy temporal-
difference learning with function approximation. In Proc. 18th 
International Conf. on Machine Learning, pages 417-424.

• Precup, D., Sutton, R.S., Paduraru, C., Koop, A., and Singh, S. (2006). 
Off-policy learning with recognizers. In Advances in Neural 
Information Processing Systems 18 (NIPS*05).

• Sutton, R.S., Precup, D., and Singh, S.P. (1999). Between MDPs and 
semi-MDPS: A framework for temporal abstraction in reinforcement 
learning. Artificial Intelligence, 112(1-2): 181-211.
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