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Abstract— The purpose of this report is to summarize
the work done by a number of researchers over the course
of a number of years related to creating illumination
invariant images for the purpose of shadow removal. We
will also discuss the experiments that were implemented
in order to test the algorithm on consumer-grade digital
cameras, and the results of these experiments.

I. INTRODUCTION

Over the last eight years or so, a large amount
of research has been undertaken by a Graham
D. Finlayson and Steven D. Hordley from the
University of East Anglia in Norwich, and Mark S.
Drew and Cheng Lu from Simon Fraser University
in Vancouver, British Columbia, to study meth-
ods for creating invariant images from a single
digital image. An invariant image is one that is
independent of lighting, and therefore has shading
removed. These invariant images are also referred
to as intrinsic images in the literature, as they
capture the intrinsic reflectivity of the objects in
the image, independent of illumination conditions.
This work is embodied in a number of papers
that have been published by the aforementioned
authors, and we will be focusing on three main
papers, [2], [3], and [1].

In Section 2 of this report, we discuss the
theoretical underpinning of the method for creating
the invariant images. The procedure for finding
the parameters of the model in practice will be
discussed in Section 3. In Section 4 we will discuss
the experiments that we performed in order to test
the methods and the results, and in Section 5 we
will conclude the report with a brief discussion and
summary of work.

II. BACKGROUND

A. Color Constancy

Color constancy has been studied for decades
by many researchers, and plays an extremely im-
portant role in many computer vision applications.
An image is made up of a set of pixels, and each
pixel reflects the light that has been received at a
sensor in a digital camera or other optical sensor.
The light that hits the sensor is made up of two
main components, the illumination component that
reflects the colour and intensity of the illuminant,
and the reflectance component which captures the
surface reflectance properties, namely the color of
the object reflecting the light. It is these two com-
ponents that define the properties of the light that
hits the sensor. The sensor then converts the light
into a digital signal, adding in a certain amount of
noise. Color constancy is concerned with finding
an intrinsic measurement of the color of the surface
at a pixel in such a way that the measure will be
the same for that same surface independent of any
illumination effects, and is useful for recognizing
specific colors across images, or even within the
same image if the lighting conditions vary within
the image. Simply put, we wish to find a way of
specifying that a red ball has a specific color value
that it will retain in any image of the ball under
any lighting condition. Color constancy then can
be used for object recognition tasks, or for more
specialized tasks such as shadow removal, which
is what we will be concerning ourselves with.

Color is often analyzed by considering three
separate channels, red, green and blue, and for the
purposes of this report we will use this RGB color
model. The intensity, then, of each of these three



color channels can be described by

Rk =

∫
E(λ)S(λ)Qk(λ)dλ, k = R,G,B, (1)

with the illumination spectral power distribution
E(λ), the surface spectral reflectance function
S(λ), and the camera sensor sensitivity functions
Qk(λ). The integral is usually taken over the
visible wavelengths of light, and we then form the
RGB color R = {RR, RG, RB} at a pixel.

In order to simplify this equation and remove the
integral, the authors note that the camera sensor
Qk(λ) behaves similar to a Direc delta function
Qk(λ) = qkδ(λ − λk), where qk represents the
sensor strength qk = Qk(λk). The authors also
note that the illumination function Ek can be
approximated by Planck’s law

E(λ, T ) = Ic1λ
−5(e

c2
Tλ − 1)−1 (2)

where c1 and c2 are constancts, I controls the in-
tensity of the light, and T is the temperature of the
light. For the typical temperature ranges of most
light sources, Wein’s approximation [4] allows us
to further reduce the illumination equation to

E(λ, T ) = Ic1λ
−5e−

c2
Tλ (3)

Now plugging the Dirac delta estimate as well
as equation 3 back into equation 1, we get the
narrow-band sensor response equation

Rk = Ic1λ
−5
k e−

c2
TλS(λk)qk. (4)

The most important contribution of [2] is con-
tained in following observation. If we now divide
any two color channels and form the band-ratio
2-vector chromaticities

ck = Rk/Rp (5)

where p is fixed to one color channel, and k
indexes over the other two channels, then the
effects of the illumination intensity, I , is removed
since it is a constant value at each pixel for all three
color channels. For example, we could choose to
use the green channel as the divisor, giving us
c = {RR/RG, RB/RG}1. Now if we take the log

1We have chosen to divide each channel by the green channel,
this decision was made arbitrarily, and any channel can be chosen
as the divisor.

of these ck values, with sk ≡ c1λ
−5
k S(λk)qk and

ek ≡ −k2/λk, we obtain

ρk ≡ log(ck) = log(sk/sp) + (ek − ep)/T. (6)

Looking closely at equation 6, we see that it is
the equation for a straight line parameterized by
T . The ratios sk/sp are dependent of the surface,
without any illumination effects, and the 2-vector
direction (ek − ep) is independent of the surface.
This means that the offset for the line is based
on the surface, but the direction is independent
of the surface. Therefore, if we project the 2D
logs of chromaticity, our ρks into the direction e⊥

orthogonal to the vector e ≡ (ek−ep), then we will
get a single scalar value that represents the intrinsic
color of the surface captured by the pixel, com-
pletely removing the effects of illumination. Since
shadows are created by differences in intensity
and color (temperature T ) of the lighting between
various regions in an image, they are effectively
removed through this projection.

In [1], a variation on this method is introduced
which creates a 2D invariant chromaticity image
rather than just a 1D invariant image. The authors
make the observation that the quality of the 1D
invariant image is dependent on the color channel
that is chosen as the divisor. Instead of picking
a single color channel to divide by, the authors
instead amend the definition of equations 5 and 6
as follows:

ck = Rk/

( ∏
i=R,G,B

Ri

)1/3

= Rk/RM (7)

and the log version

ρk = log(ck) = log(sk/sM) + (ek − eM)/T (8)

for k = R,G,B, with sk, sM , ek, and eM updated
accordingly. Therefore, for each pixel we get a
coordinate in 3-space, ρ = {ρR, ρG, ρB}. However,
since we are dividing by a constant, RM , all of
the values of ρ will lie on a plane orthogonal to
u = 1/

√
3(1, 1, 1)T , and so we can easily project

these points onto a 2D space, which is refered to in
the paper as the Geometric Mean 2D Chromaticity
Space. Then, from the 2D projection, each point is
given by two coordinates, {χ1, χ2}. Then instead
of finding the vector e onto which we project
the points, we can consider rotating the points in



2D space by an amount θ, and then projecting
the points onto the horizontal axis to form a 1D
greyscale image

I = χ1 cos θ + χ2 sin θ (9)

If we can find the proper value of θ by which to
rotate the data, we can tranform the data into a 2D
space where the horizontal axis corresponds to the
surface reflectance properties, and the vertical axis
accounts for the illumination. Therefore, projecting
down onto the horizontal axis gives a 1D measure
that is independent of any illumination effects.

B. Camera Calibration
In order to create our invariant image, we need

to determine the correct value of θ, or the vector e
on which to project the data such that the effects
of illumination are removed. Through experimen-
tation, the authors determined that this parameter is
dependent on the camera being used, but once it is
found, it can be used to create invariant images for
any image generated by the camera. The simplest
way to calibrate a camera then is to take a number
of pictures of the same surface under different
lighting conditions. [2] describes the algorithm
for computing the required parameters from these
images, but for the sake of conserving space, and
since we will not be using this method, we will
leave the interested reader to locate the details in
the original paper.584 G.D. Finlayson, M.S. Drew, and C. Lu
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Fig. 1. Intuition for finding best direction via minimizing the entropy.

other hand, if we instead project in some other direction, as in Fig. 1(b), then instead of
pixels located in sharp peaks of occurrence we expect the distribution of pixels along
our 1D projection line to be spread out. In terms of histograms, in the first instance, in
which we guess the correct direction and then project, we see a distribution with a set of
sharp peaks, with resulting low entropy. In the second instance we instead see a broader
histogram, with resulting higher entropy.

Hence the idea in this paper is to recover the correct direction in which to project by
examining the entropy of a greyscale image that results from projection and identifying as
the correct “invariant direction" that which minimizes the entropy of the resulting image.
Changing lighting is automatically provided by the shadows in the image themselves.

In §2, we first recapitulate the problem of lighting change in imagery, along with the
accompanying theory of image formation. The method of deriving an invariant image
is given, for known invariant direction, for imagery that was captured using a calibrated
camera. Now, without any calibration or foreknowledge of the invariant direction, in §3.1
we create a synthetic “image" that consists of a great many colour patches. Since the
image is synthetic, we in fact do know the ground truth invariant direction. Examining the
question of how to recover this direction from a single image, with no prior information,
we show that minimizing the entropy provides a very strong indicator for determining
the correct projection. For a synthetic image, results are very good indeed. This result
provides a proof in principle for the entropy-minimizing method.

But how do we fare with a real camera? In §3.2 we consider a set of calibration
images, taken with a known camera. Since we control the camera, and the target, we
can establish the invariant direction. Then comparing to the direction recovered using
entropy minimization, we find that not only is the direction of projection recovered
correct (within 3 degrees), but also the minimum is global and is a very strong signal —
essentially, Nature is telling us that this is indeed the way to go: entropy minimization
is a new and salient indicator for the projection that removes shadows.

Fig. 1. Intuition for finding best direction by minimizing entropy

We would like, then, a method for determining
the parameters from a single image with an uncal-
ibrated device, and this is the main contribution of
[1]. In this paper, the authors describe a method

that uses entropy minimization to find the optimal
projection vector. Figure 1 is from the paper, and
gives us the intuition behind the method, that the
entropy of our resulting projected image will give
a useful measure for how good the direction on
which we project is. What is not mentioned in the
paper, but plays a vital role as far as the method
is applicable in practice is that this method really
works best when the number of different invariant
colors in an image is low.

Equation 9 gives us a greyscale image I repre-
senting the invariant image, but we cannot simply
calculate the entropy of a 1D vector. In order
to calculate the entropy, we create a normalized
histogram of the values in I, using Scott’s Rule

bin width = 3.49std(I)N1/3 (10)

where std(I) is the standard deviation of the
components of I, and N is the size of the invariant
image data for the current angle. The reason for
the N term is that the authors exclude the top and
bottom 5% of the range values in order to eliminate
noise, and so a different number of values are
excluded for each angle θ.

C. Removing Shadows

Once we have an invariant image, we would like
to reintegrate this shadowless image back into the
original image in such a way that we preserve the
original colors and contrasts, but we remove the
shadows and other effects of illumination2. The
general idea presented in [3] is to create two edge
maps, one from the original image, and one for
the invariant image. Then, edges that appear in the
original image edge map, but not in the edge map
for the invariant image can be assumed to be due to
illumination effects, hence they are shadow edges.
The authors then create a gradient map for each
of the color channels for the original image, and
then alter the map to zero out the gradients at the
shadow edges. By then reintegrating this gradient
map, taking into consideration the boundary con-
ditions by essentially using the values from the
original image, the resulting image will have the
same colors and contrast as the original image, but

2Though it is not addressed in any of the cited papers, it would
seem that this technique would effectively remove specularities, and
other illumination effects other than just shadows.



with the shadows removed. In [1], the method is
further refined to use the invariant chromaticity
image that is developed in the paper, as well as
using a few other tricks such as taking the edge
map of a Mean-Shift processed original image, and
using a form of in-filling to grow edges into the
shadow-edge regions, rather than simply zeroing
the gradient at the shadow edges.

For the purpose of this report, we were more
interested in investigating the process of creating
the invariant image, and so we did not go much
further with the shadow removal process other than
to understand the methodology.

III. ALGORITHM

As stated in the previous section, we were
concerned mostly with the process of creating
invariant images, not the process of removing
shadows, and so we will only go into detail on
the algorithm for generating the invariant images
through entropy minimization.

The main idea behind the process for finding
the invariant image is summarized in the following
algorithm.

Form a 2D log-chromaticity representation of
the image.
for θ = 1..180 do

Form greyscale image I: the projection onto
1D direction.
Calculate top and bottom 5th percentile of
range of values and remove.
Calculate bin width using Scott’s Rule.
Form histogram for I and calculate entropy.
Keep track of minimum entropy.

end for
Min-entropy direction is correct projection.

The algorithm is fairly simple, but there are
a number of details that are hidden by using
pseudocode, which we will discuss in the next
section.

IV. EXPERIMENT AND RESULTS

In [1], the authors claim that the method de-
scribed worked on all of the cameras that they
tested, and so the purpose of our experiments were
to test if the claim would hold even for consumer-
grade digital cameras. The cameras that the authors
used in their experiments were very expensive,

professional cameras. The goal then was to see
if we could replicate the results using this author’s
Pentax Optio c© 6.0 megapixel digital camera.

We set out on a sunny day and took a number of
pictures of scenes that had predominant shadows.
It turned out that the most important property of
the shadows in the photographs was that they were
not too dark. This is due to the fact that if the
pixels in the shaded areas are too dark, it is nearly
impossible to differentiate the pixels from black,
and so getting any color information out of these
pixels becomes difficult, and the algorithm fails to
produce even somewhat reasonable results.

We implemented the algorithm in the previous
section using both the standard log-chromaticity
space in equations 5 and 6, as well as the geometric
mean 2D chromaticity space in equations 7 and
8, and it turned out that the differences were
barely noticeable. At this point it is important
to note that for an experiment such as this, we
are trying to generate images in which the ef-
fects of illumination are eliminated, but this is
not something that can be reasonably quantified.
Therefore, the results are strictly qualitative, and
we do not have empirical error measurements. If
we were somehow able to photograph a scene
with no illumination, which is impossible since
photographs require capturing reflected light, then
we could compare these images to our results,
but because such a thing is not possible, we have
to look at the results and give some subjective
measure of how good we are doing.

After running the algorithm on all 28 of the
photographs from our digital camera, the results
were so poor that we figured there must be a
bug in the algorithm. To test the algorithm, we
tried running it on the images that were used in
the papers. Unfortunately, these images were not
publicly available, and so we resorted to taking
low resolution screen-captures of the images from
the PDF versions of the paper, which resulted in
poor copies of the images. Surprisingly though, the
algorithm was able to produce excellent results, not
quite as good as in the papers, but quite close, and
certainly much better than the results from our own
photographs.

At this point it seemed clear that the problem
was in the images produced by the camera. It was



not a problem of detail or resolution, since even
the low quality images taken from the PDF for the
paper worked well, it was a problem of the colors
in the image. We investigated further by looking at
the photographs in more detail using the program
Adobe Photoshop c©. Photoshop c© allowed us to
look at the images in higher detail, and inspect
statistics of the image, such as the color histogram.
It turned out that in our images, the contrast in the
shaded regions was much higher than in the bright
regions, while in the image from the paper, the
contrast did not vary nearly as much between the
shaded and bright regions.

We discussed this problem with a fellow class-
mate, Boris Oreshkin, who informed us that this
problem is actually a feature of most digital
cameras. In order to produce visually appealing
images, the cameras artificially boost the color
contrast in darker regions. This explanation agreed
with our observations, and provided a reasonable
explanation for the poor results.

Next we attempted to adjust the algorithm in
order to compensate for this problem. We looked
at the various invariant images that were produced
as we rotated the log-chromaticity image from 1
to 180 degrees. It turned out that some of the
images that were produced that had much higher
entropy than the minimum entropy image were
actually much better and had many of the shadows
removed. What this meant was that entropy was
not in fact a good indicator of how good our
projection was for our testing images. Unfortu-
nately we were unable to come up with a better
measure than entropy, and so we were unable to
find an automatic way of determining how good
the invariant image was, and had to resort to
manual inspection.

The next logical step seemed to be to try to
manually calibrate our camera, that is to take a
number of pictures of uniformly colored patches
under various lighting conditions, plot the mean
log-chromaticities, and then visually inspect the re-
sult to determine the direction by which to project
the data in order to remove the effects of the
illumination. Figure 2 shows the log-chromaticities
of 4 different colored patches, red, blue, white, and
yellow, under 14 different illumination conditions.
From the figure, it is apparent that there is in fact
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Fig. 2. Log-chromaticities of 4 different colored patches under 14
different illumination conditions

no predominant direction on which the data falls,
no angle that we could rotate the data by in order
to cause the data to be vertically aligned within
each color, as there was in the papers. For each of
the patches, the points do seem to vary somewhat
linearly, but while the blue, red, and white points
follow one direction, the yellow points seem to
follow a completely different, nearly perpendicular
direction.

From this previous experiment, it is clear that
the intensity of pixels in images produced by this
camera either do not conform to the theoretical
assumption in equation 1, the camera sensors are
not narrow-band enough for this method to work,
or there is simply too much noise in the images
due to the quality of the sensors in the camera.
Therefore, the results of our experiments were
quite poor. It seems most likely that the largest
problem is that the sensors are not narrow-band
enough, and respond quite differently to different
wavelengths of light.

Figures 3, 4, 5, and 6 show the results for
one of the test images. The algorithm detected
that a rotation angle of 20 degrees produced the
minimum entropy invariant image. It is clear from
figure 6 that the minimum-entropy invariant image
still contains the shadows of the car, meaning that
the result is quite poor. From the log-chromaticity
plot, figure 4, it is quite evident that a large number
of the pixel seem to lie in a somewhat horizontal
direction, but the pixels on the right side of the
plot which correspond to the bright red regions



Fig. 3. The original test image, blurred slightly with a Guassian
kernel
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Fig. 4. Log-Chromticity plot of the original image
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Fig. 5. Entropy of the invariant image as we rotate from 1 to 180
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Fig. 6. Optimal invariant image as chosen by our algorithm

in the image seem to to be spread out vertically.
As in figure 2, we see that different colors seem
to be spread across very different directions, which
makes the construction of an illumination invariant
image impossible using the methods we’ve looked
at.

V. CONCLUSIONS AND FUTURE WORK

In this report we implemented an algorithm that
has been developed and refined over the course
of a number of years by a number of researchers
for creating an illumination invariant image from
a single image using an uncalibrated camera. The
authors of the paper were able to get excellent
results using pictures taken with a high-end pro-
fessional camera. In the papers, the authors claim
that their method works on all of the cameras that
they tested, and so we attempted to test whether the
method would work on a consumer-grade camera.
It turns out that there are properties of lower
end digital cameras that prevent the method from
producing useful results. Colors and contrast are
distorted in lighter and darker regions of images,
and these two problems cause the algorithm to find
a suboptimal result.

It would be interesting to find a different mea-
sure other than entropy of the invariant image
for determining how good the image is. The log-
chromaticities of the different colors in the image
were found to translate linearly as the properties
of the illumination changed, the problem was that
the linear translation had a different direction for
different colors. Somehow taking this into con-
sideration, and possibly rotating various bands of
colors in different directions could produce better
results, but we did not have a chance to test this.
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