COMP250: More Recursion examples. Merge sort.

Jérôme Waldispühl
School of Computer Science
McGill University

Based on slides from (Snoeyink, 2004)
Designing recursive algorithms

• To write a recursive algorithm:
 – Find how the problem can be broken up in one or more smaller problems of the same nature
 – Remember the base case!

• Usually, better running times are obtained when the size of the sub-problems are approximately equal:
 – \(\text{power}(a,n) = a \times \text{power}(a,n-1) \Rightarrow O(n) \text{ operations} \)
 – \(\text{power}(a,n) = (\text{power}(a,n/2))^2 \Rightarrow O(\log n) \text{ operations} \)
 – Naïve Fibonacci \(\Rightarrow O(\phi^n) \text{ operations} \)
 – Better Fibonacci \(\Rightarrow O(\log n) \text{ operations} \)
Sorting problem

Problem: Given a list of n elements from a totally ordered universe, rearrange them in ascending order.

Classical problem in computer science with many different algorithms (bubble sort, merge sort, quick sort, etc.)
Insertion sort

1 3 6 5 2 4
1 3 6 5 2 4
1 3 5 6 2 4
1 3 5 6 2 4
1 2 3 4 5 6
1 2 3 4 5 6
Insertion sort

n elements already sorted

New element to sort

$n+1$ elements sorted
Insertion sort

For $i \leftarrow 1$ to $\text{length}(A) - 1$
 $j \leftarrow i$
 while $j > 0$ and $A[j-1] > A[j]$
 swap $A[j]$ and $A[j-1]$
 $j \leftarrow j - 1$
 end while
end for

• Iterative method to sort objects.
• Relatively slow, we can do better using a recursive approach!
Divide and Conquer

Recursive in structure

- **Divide** the problem into sub-problems that are similar to the original but smaller in size
- **Conquer** the sub-problems by solving them recursively. If they are small enough, just solve them in a straightforward manner.
- **Combine** the solutions to create a solution to the original problem
An Example: Merge Sort

Sorting Problem: Sort a sequence of n elements into non-decreasing order.

- **Divide:** Divide the n-element sequence to be sorted into two subsequences of $n/2$ elements each.
- **Conquer:** Sort the two subsequences recursively using merge sort.
- **Combine:** Merge the two sorted subsequences to produce the sorted answer.
Merge Sort - Example

Divide & Conquer

Merge
Merge/combine – Example

Idea: If we have 2 lists L and R already sorted, we can easily (i.e. quickly) build a sorted list A with all elements of L and R.
Merge sort (principle)

Recursive case:
- Unsorted array A with n elements
- Split A in half \rightarrow 2 arrays L and R with $n/2$ elements
- Sort L and R
- Merge the two sorted arrays L and R

Base case: Stop the recursion when the array is of size 1. Why? Because the array is already sorted!
Merge Sort – (bigger) Example

Original Sequence

Sorted Sequence
Merge-Sort (A, p, r)

INPUT: a sequence of n numbers stored in array A

OUTPUT: an ordered sequence of n numbers

```
MergeSort (A, p, r)   // sort A[p..r] by divide & conquer
1   if p < r
2   then q ← ⌊(p+r)/2⌋
3       MergeSort (A, p, q)
4       MergeSort (A, q+1, r)
5       Merge (A, p, q, r) // merges A[p..q] with A[q+1..r]
```

Initial Call: MergeSort(A, 1, n)
Procedure Merge

Merge\(A, p, q, r\)

1. \(n_1 \leftarrow q - p + 1\)
2. \(n_2 \leftarrow r - q\)
3. for \(i \leftarrow 1\) to \(n_1\)
 - do \(L[i] \leftarrow A[p + i - 1]\)
4. for \(j \leftarrow 1\) to \(n_2\)
 - do \(R[j] \leftarrow A[q + j]\)
5. \(L[n_1+1] \leftarrow \infty\)
6. \(R[n_2+1] \leftarrow \infty\)
7. \(i \leftarrow 1\)
8. \(j \leftarrow 1\)
9. for \(k \leftarrow p\) to \(r\)
 - do if \(L[i] \leq R[j]\)
 - then \(A[k] \leftarrow L[i]\)
 - \(i \leftarrow i + 1\)
 - else \(A[k] \leftarrow R[j]\)
 - \(j \leftarrow j + 1\)

Input: Array containing sorted subarrays \(A[p..q]\) and \(A[q+1..r]\).

Output: Merged sorted subarray in \(A[p..r]\).

Sentinels, to avoid having to check if either subarray is fully copied at each step.
Running time of Merge Sort

Running time $T(n)$ of Merge Sort:

- **Base case:** constant time c
- **Divide:** computing the middle takes constant time c'
- **Conquer:** solving 2 subproblems takes $2T(n/2)$
- **Combine:** merging n elements takes $k \cdot n$ (i.e. time proportional to the number of elements to merge)

Total:

\[
T(n) = \begin{cases}
c & \text{if } n = 1 \\
2T(n/2) + k \cdot n + c' & \text{if } n > 1
\end{cases}
\]

Example: Let $c=1$, $c'=1$ and $k=1$

<table>
<thead>
<tr>
<th>n</th>
<th>1</th>
<th>2</th>
<th>4</th>
<th>8</th>
<th>16</th>
<th>32</th>
<th>64</th>
<th>...</th>
<th>n</th>
</tr>
</thead>
<tbody>
<tr>
<td>T(n)</td>
<td>1</td>
<td>5</td>
<td>15</td>
<td>39</td>
<td>95</td>
<td>223</td>
<td>511</td>
<td>...</td>
<td>?</td>
</tr>
</tbody>
</table>
Running time of Merge Sort

The graph illustrates the running time of Merge Sort for different input sizes. The x-axis represents the number of elements (n), and the y-axis represents time. The graph shows two different types of time complexity:

- **Linear time** (red line): this represents a time complexity of $O(n)$, which grows linearly with the input size.
- **Quadratic time** (green line): this represents a time complexity of $O(n^2)$, which grows quadratically with the input size.

The blue line indicates the time $T(n)$, which is the total time taken by the merge sort algorithm to sort the list.