Computers playing games
One-player games

- Puzzle: Place 8 queens on a chess board so that no two queens attack each other (i.e. on the same row, same column, or same diagonal)

```plaintext
for i_1 ← 1 to 8  // row of 1st queen
    for i_2 ← 1 to 8  // row of 2nd queen
        ...  
    for i_8 ← 1 to 8  // row of 8th queen
        if (isValid(i_1,i_2,...,i_8)) print i_1,i_2,...,i_8
```

If we had a n x n board, what would be the running time?
Bactracking algorithm

- Idea: place queens from first row to last, but stop as soon as an invalid board is reached and backtrack to the last valid board
- Very similar to depth-first search

Algorithm placeQueens(partialBoard[8][8], row)

Input: A board with queens placed on rows 0...row-1
Output: Prints all valid configurations that can be reached from this board

if (row=8) print partialBoard;
else
for i = 0 to 8-1 do
 partialBoard[row][i] = QUEEN;
 if (isValid(partialBoard)) then placeQueens(partialBoard, row+1)
 partialBoard[row][i] = EMPTY; // reset board to original position
Backtracking algorithms

Only 2057 partial boards are considered, compared to $8^8 = 16\ 777\ 216$ for the original algorithm.
Two-player games

• Computers now beat humans in
 – backgammon (since 1980)
 – checkers (since 1994) (U. of Alberta)
 – chess (since 1997) (Prof. Monty Newborn) ➔ IBM Deep Blue
 – bridge (since 2000 (?))
 – Go (since 2016)

• Human still beat computers in:
 – Rugby

• Human-computers are tied in:
 – 3x3 Tic-tac-toe
 – Rock-paper-scissor (but see http://www.rpschamps.com)
Game trees

X's turn

O's turn

X's turn

...
Winning and Losing Positions

• A winning position for X is a position such that if X plays optimally, X wins even if O plays optimally.

• A losing position for X is a position such that if O plays optimally, X loses even if it plays optimally.

• Recursive definition: On X's move,

 a position P is winning for X if
 – P is an immediate win (Leaf of game tree), OR
 – There exists a move that leads to a winning position for X

 a position P is losing for X if
 – P is an immediate loss (Leaf of game tree), OR
 – All moves available to X leads to losing positions for X

 a position P is a tie if
 – P is an immediate tie (Leaf of game tree), OR
 – No moves available to X lead to a win, but at least one leads to a tie
Example

X's move

O's move

X's move

+1 0 0

-1

0 0 -1

+1 -1 0 +1 +1
Minimax principle

Two opponents: maximizer and minimizer.

Algorithm maxPlayer(board, depth)

Input: The current board and the depth of the game tree to explore

Output: The value of the current position

if (depth=0) then return eval(board)
else
 return max { minPlayer(b', depth-1): b' is one move away from board }

Algorithm minPlayer(board, depth)

if (depth=0) return eval(board)
else return min { maxPlayer(b', depth-1): b' is one move away from board }
Example

\[\text{score: } \text{MIN wins} \]

\[\text{score: } \text{MAX wins} \]
How many evaluations do we make?

• Branching factor := number of moves per turn, call it b
• At each depth d, we have b^d nodes.
• In chess, it is estimated there are 10^{120} leaf nodes to evaluate.
• Atoms in universe: 10^{80}
• Nanoseconds since Big Bang: 10^{26}
• If each atom since Big Bang evaluates a chess move at nanosecond speed we compute: 10^{106} leaf nodes.
• Can we do better?
Evaluation functions

• Idea: Look at most K moves ahead.
 – Tree has height K. Leaves are not final positions
 – Estimate the potential of the leaves
 • Good position for white: large positive score
 • Good position for black: large negative score
 • Undecided position: score near zero
 • For chess:
 – 1 point per pawn, 3 points for knights and bishops, ...

• Select the move that leads toward the most promising leaf.
• Start again next turn.
• Idea: alpha-beta pruning
Alpha-Beta Pruning

- As we evaluate positions, we can eliminate branches that lead to moves that would never be chosen.
Example

↓ score: MIN wins
↑ score: MAX wins
Example

MIN

MAX

MIN

8 7 3 9 9 8 2 4

0 -> compute
X -> skip