COMP250: Introduction to algorithms
The set-intersection problem

Jérôme Waldispühl
School of Computer Science
McGill University
(Slides from M. Blanchette)
Algorithms

• A **systematic** and **unambiguous** procedure that produces - in a **finite number of steps** - the answer to a question or the solution of a problem

• An algorithm has an input:
 – Example ?
 – Sometimes, the algorithm works only if the input satisfies some conditions (pre-conditions). **These need to be specified clearly!!!**
 • Examples?

• An algorithm has an output:
 – The solution to the problem (hopefully!)
 • Examples?
What is a *good* algorithms?

- **Correctness:**
 - Ideally: always returns the right answer
 - When the problem is too hard, we want the algo to
 - Return the right answer most of the time, or
 - Returns an answer that is guaranteed to be close to the right answer

- **Speed:** Time it takes to solve the problem

- **Space:** Amount of memory required

- **Simplicity:**
 - Easy to understand and analyze
 - Easy to implement
 - Easy to debug, modify, update
Definition

“A finite set of rules which gives a sequence of operations for solving a specific type of problem” such that:

- **Input**: One or more inputs
- **Output**: One or more outputs which have a specific relation to the input(s)
- **Finiteness**: It must terminate after a finite number of steps.
- **Effectiveness**: Each operation needs to be basic
- **Definiteness**: Each step must be well defined and unambiguous.

(Knuth, 1973)
Running time

- How to measure the speed of an algorithm?
- Problem #1: Running time depends on the size of input.
 - intersecting two big lists takes more time than two small ones
- Solution:
 - Describe running time as a function of input size

Examples:

To compute the average of a set of n numbers, the running time may be $T(n) = 123*n + 0.3$ microseconds.

To compute the intersection of a list of m students with a list of n students, the running time may be $T(m, n) = 234 \cdot m (n \log(n) + 53 \log(n) + 123)$
Running time (2)

Problem #2: Running time depends not only on the size of the input but sometimes also on the content of the input itself (called the instance of the problem)

Example: For the list-intersection problem, an algorithm may be fast on (Alice, Bob, Carl, Don) vs (Alice, Bob, Carl, Don) but it may be slow on (Alice, Bob, Carl, Don) vs (Don, Carl, Bob, Alice)
Running time (3)

Three possibilities to measure running time

• Best case: Time on the easiest input of fixed size.
 – Usually meaningless

• Average case: Time on average input
 – Good measure, but very hard to calculate.
 – “Average” according to what input distribution?

• Worst case: Time on most difficult input
 – Good for safety critical systems: airplane traffic control
 – Easier to estimate
Languages for describing algorithms

• English Prose:

To find the maximum element of an array, initialize m to the value of the first element. Then, for each subsequent element, if that element is larger than m, replace m with the value of that element. Return the value of m.

• Binary language:

01010101110011010100110101010010101010100
101010111011001101010100110101001010101010100
101010101010010110

• Programming language (Java, C…)

```java
int findMax(int A[], int n) {
    int m=A[0];
    for (int i=1; i<n; i++)
        if (m<A[i]) m=A[i]
    return m;
}
```
Pseudo-code

- Universal language to describe algorithms to human, independent of the programming language

- Has common constructs like
 - Assignments: \(x \leftarrow x+1 \)
 - Conditionals: \(\text{if } (x=0) \text{ then } ... \)
 - Loops: \(\text{for } i \leftarrow 0 \text{ to } n \text{ do } ... \)
 - Objects and function calls: \(\text{triangle.getArea()} \)
 - Mathematical notation: \(x \leftarrow \left\lfloor y^3/2 \right\rfloor \)
 - Blocks, indicated by indentation

Algorithm findMax(A, n)

Input: An array A of n numbers

Output: The largest element of the array

\(m \leftarrow A[0] \)

\(\text{for } i \leftarrow 1 \text{ to } n-1 \text{ do } \{
\quad \text{if } (m < A[i]) \text{ then } m \leftarrow A[i]
\}\)

\(\text{return } m \)
List-intersection problem

• Input:
 – The names of a set of students taking COMP250
 – The names of a set of students taking MATH240.
 – **Assumption:** No two students have the same name

• Question:
 – How many students are taking both classes?

• How do I minimize the number of times I need to compare two names?
Solution 1 – Nested for-loops

Algorithm ListIntersection(A,m, B,n)

Input: An array A of m strings and an array B of m strings. The elements of A and B are assumed to be distinct.

Output: The number of elements present in both A and B

`inter ← 0`

`for i ←0 to m-1 do {`
 `for j ← 0 to n-1 do {`
 `if (A[i] = B[j]) then {`
 `inter ← inter + 1`
 }
 }
}

`return inter`
Solution 2 – Binary search

Algorithm sort(A,n)
Input: An array A of n elements.
Output: The array sorted in increasing order
[Assumed to be given]

Algorithm binarySearch(A,n, k)
Input: A sorted array A of n elements. Key k
Output: True iif A contains k

```plaintext
left ← 0
right ← n
while (right > left+1) do {
  mid ← ⌊(left+right)/2⌋
  if (A[mid]>k) then right ← mid
  else left ← mid
}
if (A[left] = k) then return True;
else return False;
```

Algorithm listIntersection(A,m, B,n)
Input: same as before
Output: same as before

```plaintext
inter ← 0
B ← sort (B,n)
for i ← 0 to m-1 do {
  if (binarySearch(B, n, A[i])) then {
    inter ← inter+1
  }
}
return inter
```
Solution 2 – Binary search

Algorithm sort(A, n)
Input: An array A of n elements.
Output: The array sorted in increasing order
[Assumed to be given]

Algorithm binarySearch(A, n, k)
Input: A sorted array A of n elements. A key k
Output: True if A contains k, False otherwise

left ← 0
right ← n

while (right > left+1) do
 mid ← ⌊(left+right)/2⌋
 if (A[mid] > k) then right ← mid
 else left ← mid

if (A[left] = k) then return True;
else return False;

Number of comparisons:
\[\sim \left\lfloor n \log_2(n) \right\rfloor\]
We’ll see why next month...

This function makes \[\left\lfloor \log_2(n) \right\rfloor + 1\] comparisons.

This loop makes \(\left\lfloor \log_2(n) \right\rfloor\) name comparisons.
Solution 2 – Binary search

Algorithm listIntersection(A,m, B,n)
Input: same as before
Output: same as before

inter ← 0
B ← sort (B,n) \[\implies \left\lfloor n \log_2(n) \right\rfloor \text{ comparisons} \]
for i ← 0 to m-1 do
 if (binarySearch(B, n, A[i])) then
 inter ← inter+1
return inter

Total number of comparisons:

\[n \left\lfloor \log_2(n) \right\rfloor + m*(\left\lfloor \log_2(n) \right\rfloor +1) = (n + m) * \left\lfloor \log_2(n) \right\rfloor + m \]
Does it matter?

<table>
<thead>
<tr>
<th>(m,n)</th>
<th>Nested loops</th>
<th>Sort + Binary search</th>
</tr>
</thead>
<tbody>
<tr>
<td>(8,8)</td>
<td>m*n = 64</td>
<td>(n+m) ⌊ \log_2(n) ⌋ + m = 56</td>
</tr>
<tr>
<td>(16,16)</td>
<td>m*n = 256</td>
<td>(n+m) ⌊ \log_2(n) ⌋ + m = 144</td>
</tr>
<tr>
<td>(32,32)</td>
<td>m*n = 1024</td>
<td>(n+m) ⌊ \log_2(n) ⌋ + m = 352</td>
</tr>
<tr>
<td>(64,64)</td>
<td>m*n = 4096</td>
<td>(n+m) ⌊ \log_2(n) ⌋ + m = 1086</td>
</tr>
<tr>
<td>...</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(1024,1024)</td>
<td>m*n = 1 048 576</td>
<td>(n+m) ⌊ \log_2(n) ⌋ + m = 21 504</td>
</tr>
<tr>
<td>(10^6, 10^6)</td>
<td>m*n ≈ 10^{12}</td>
<td>(n+m) ⌊ \log_2(n) ⌋ + m = 4 * 10^7</td>
</tr>
</tbody>
</table>

25000 times faster!
Algorithm ListIntersection (A,m, B,n)
Input: Same as before
Output: Same as before

inter ← 0
A ← sort (A,m)
B ← sort (B,n)
PtrA ← 0
PtrB ← 0

while (ptrA < m and ptrB < n) do {
 if (A[ptrA] = B[ptrB]) then {
 inter ← inter+1
 ptrA ← ptrA +1
 ptrB ← ptrB +1
 }
 else if (A[ptrA] < B[ptrB]) ptrA ← ptrA+1
 else ptrB ← ptrB+1
}

return inter

Total:
m \left\lceil \log_2(m) \right\rceil +
n \left\lceil \log_2(n) \right\rceil +
2* (m+n)

Worst case: the two lists are disjoint:
(m+n) *2 comps
Solution 4: Merge-then-sort

Algorithm ListIntersection (A,m, B,n)
Input: Same as before
Output: Same as before

inter ← 0
Array C[m+n];
for i ← 0 to m-1 do C[i] ← A[i];
for i ← 0 to n-1 do C[i+m] ← B[i];
C ← sort(C, m+n);
ptr ← 0
while (ptr < m+n-1) do {
 if (C[ptr] = C[ptr+1]) then {
 inter ← inter+1
 ptr ← ptr+2
 }
 else ptr ← ptr+1
}
return inter

Worst case: The lists are disjoint: (m+n-1) comps.

Total:
(m+n) ⌈log(m+n)⌉ + m + n -1
Summary

• Algorithms can be described at different levels. Pseudo-code is appropriate for human

• Many algorithms exist for solving any problem.

• For big inputs, good algorithms and data structures make a BIG difference