BFS

BFS(v) {
 q = empty queue
 v.visited = True
 q.enqueue(v)
 while !q.empty {
 u = q.dequeue()
 for each w in u.neighbours() {
 if (!w.visited) {
 w.visited = True
 q.enqueue(w)
 }
 }
 }
}
Example: BFS with Stack (Not BFS)
Example: BFS with queue (correct)
Survey of problems on graphs

Lecture 28
COMP 250 Winter 2018
(Slides from M. Blanchette)
Outline

• Graphs model many real-world applications
• Graphs lend themselves to nice computer science problems:
 – Shortest path
 – Cycles: Eulerian, Hamiltonian
 – Cliques and independent sets
 – Coloring
 – Matching
• We will only consider undirected graphs
Shortest path problem

• Unweighted Graph Shortest Path:
 – Given an unweighted graph and two vertices u and v,
 – Find the shortest path (minimum number of edges) between u and v

• Weighted Graph Shortest Path:
 – Given an weighted graph and two vertices u and v,
 – Find the shortest path (minimum total edges weight) between u and v

• Applications:
 – Driving from one city to another
 – Routing packets through the internet
 – Solving the Rubik’s cube using the least number of moves
Algo. for unweighted graph shortest path

- Algorithm for unweighted graph:
 - Do a breadth-first search starting at u, until v is reached
 - For each vertex visited, remember from which vertex it was reached
 - Works because vertices are visited in increasing order of distance from u
Algo. for weighted graph shortest path

Idea:
- Visit vertices in increasing order of distance from u
- The first time you get to v, you came to it via the shortest path.
- This can be done efficiently using a priority queue (see HW5)
Eulerian cycles

- Recall: A cycle is a path that returns to its starting vertex
- An **eulerian cycle** visits each **edge** exactly once (but vertices can be visited more than once)

Problem:
- Given a undirected graph
- Find an eulerian cycle (if one exists)

Algorithm: Sounds hard, but actually easy!
- Start at any vertex u and follow any unvisited edge, as long as this does not result in a graph whose unvisited edges are unreachable
- No need to plan ahead, so algorithm is fast
Hamiltonian cycles

• A Hamiltonian cycle visits each vertex exactly once

Problem:
 – Given a undirected graph
 – Find an Hamiltonian cycle
 (if one exists)

Algorithm: Very hard!
 – Nobody knows how to do much better than trying all
 \((n-1)!\) possible vertex orderings
 – Be famous: find an algorithm that runs in
 polynomial time
Graph coloring

• Problem: Given an undirected graph
 – Find the minimum number of colors needed to paint the vertices so that no pair of adjacent vertices have the same color

• Application: Coloring maps
 – Color countries so that neighbors always have different colors
 – Draw “contact graph”
 • One vertex per country
 • Edges between touching countries

• Be famous: Find a poly. time algo. for graph coloring
Cliques

• Given an undirected graph, a **clique** is a subset of vertices where all vertices are adjacent

• Problem:
 – Given an undirected graph
 – Find the largest clique it contains

• **Be famous**: Find a poly. time algo for finding maximal cliques
Matching

• Example:
 – n people want to get married (vertices)
 – Some pairs of people are compatible (good horoscope, shown by edges), others are incompatible (no edge)
 – Question:
 Can we match everybody?

• NB: The graph contains triangles: what does that mean?

• Efficient algorithms are known but quite complicated