Graphs

Lecture notes adapted from Goodrich and Tomassia
A graph is a pair \((V, E)\), where
- \(V\) is a set of nodes, called vertices
- \(E\) is a collection of pairs of vertices, called edges

Example:
- A vertex represents an airport and stores the airport code
- An edge represents a flight route between two airports
Edge Types

- **Directed edge**
 - ordered pair of vertices \((u,v)\)
 - first vertex \(u\) is the origin
 - second vertex \(v\) is the destination
 - e.g., a flight

- **Undirected edge**
 - unordered pair of vertices \((u,v)\)
 - e.g., a street

- **Directed graph**: all edges are directed
- **Weighted edge**: has a real number associated to it
 - e.g. distance between cities
 - e.g. bandwidth between internet routers

- **Weighted graph**: all edges have weights

- Example diagrams:
 - **Directed edge**: ORD to PVD
 - **Undirected edge**: ORD to PVD with 849 miles
Labeled graphs

- Labeled graphs: vertices have identifiers

 Note: Geometric layout doesn’t matter - only connections matter

- Unlabeled graph: vertices have no identifiers
Applications

- Electronic circuits
 - Printed circuit board
 - Integrated circuit
- Transportation networks
 - Highway network
 - Flight network
- Computer networks
 - Local area network
 - Internet
 - Web
- Databases
 - Entity-relationship diagram
Terminology

- **Endpoints of an edge**
 - U and V are the endpoints of a
- **Edges incident on a vertex**
 - a, b, and d are incident on V
- **Adjacent vertices**
 - Connected by an edge
 - U and V are adjacent
- **Degree of a vertex**
 - Number of incident edges
 - X has degree 5
- **Parallel edges**
 - h and i are parallel edges
- **Self-loop**
 - j is a self-loop
Terminology (cont.)

Path
- sequence of adjacent vertices

Simple path
- path such that all its vertices are distinct

Examples
- $P_1=(V, X, Z)$ is a simple path
- $P_2=(U, W, X, Y, W, V)$ is a path that is not simple

Graph is connected iff
- For all pair of vertices u and v, there is a path between u and $v
Terminology (cont.)

Cycle
- path that starts and ends at the same vertex

Simple cycle
- cycle where each vertex is distinct

Examples
- \(C_1=(V, X, Y, W, U, z) \) is a simple cycle
- \(C_2=(U, W, X, Y, W, V, z) \) is a cycle that is not simple

A tree is a connected acyclic graph
Properties

Property 1

\[\sum_{v \in V} \deg(v) = 2|E| \]

Why?

Property 2

In an undirected graph with no self-loops and no multiple edges

\[|E| \leq |V| (|V| - 1)/2 \]

Why?

Example

- \(|V| = 4 \)
- \(|E| = 6 \)
- \(\deg(v) = 3 \)
Data structure for graphs - Adjacency lists

- Graph can be stored as
 - A dictionary of pairs (key, info) where
 - key = vertex identifier
 - info contains a list (called adj) of adjacent vertices

Example: if the dictionary is implemented as a linked-list
Adjacency lists - Operations

- `addVertex(key k)`:
  ```
  vertices.insert(k, emptyList)
  ```

- `addEdge(key k, key l)`:
  ```
  vertices.find(k).adj.insert(l)
  vertices.find(l).adj.insert(k)
  ```

- `areAdjacent(key k, key l)`:
  ```
  return vertices.find(k).adj.find(l)
  ```
Data structure for graphs - Adjacency matrix

Define some order on the vertices, for example:
DFW, LAX, LGA, ORD, SFO

Graph with n vertices is stored as
- n x n array M of boolean, where
- $M[i][j] = \begin{cases} 1 & \text{if there is an edge between i-th and j-th vertices} \\ 0 & \text{otherwise} \end{cases}$

<table>
<thead>
<tr>
<th></th>
<th>DFW</th>
<th>LAX</th>
<th>LGA</th>
<th>ORD</th>
<th>SFO</th>
</tr>
</thead>
<tbody>
<tr>
<td>DFW</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>LAX</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>LGA</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>ORD</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>SFO</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>
Adjacency matrix - Operations

- addEdge(i,j): $\text{matrix}[i][j] = 1$
- removeEdge(i,j): $\text{matrix}[i][j] = 0$
- Not very good for inserting/removing vertices: requires shifting elements of matrix.
- Requires space $O(n^2)$
Lists vs Matrices

- **Adjacency lists are better if:**
 - You frequently need to add/remove vertices
 - The graph has few edges
 - Need to traverse the graph

- **Adjacency matrices are better if**
 - you frequently need to
 - add/remove edges, but NOT vertices
 - Check for the presence/absence of an edge between i,j
 - matrix is small enough to fit in memory