COMP250: Dictionary ADT & Binary Search Trees

Lecture 22
Jérôme Waldispühl
School of Computer Science
McGill University
Dictionary ADT

• A dictionary (a.k.a. map) stores a set of pairs (key, value)
 – (word, definition)
 – (studentID, studentRecord)
 – (flightNumber, flightInformation)

• Data is accessed only through key:
 – Object find(key k)
 – void insert(key k, Object v)
 – Object remove(key k)

• If the keys can be ordered
 – Object previous(key k)
 – Object next(key k)
Dictionary ADT

Dictionary vehicle = {
 'car': 'a road vehicle, typically with four wheels, powered by an internal combustion engine and able to carry a small number of people.';
 'bicyle': 'a vehicle composed of two wheels held in a frame one behind the other, propelled by pedals and steered with handlebars attached to the front wheel.'
}
Array implementation

<table>
<thead>
<tr>
<th>Key</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Key 1</td>
<td>Content 1</td>
</tr>
<tr>
<td>Key 2</td>
<td>Content 2</td>
</tr>
<tr>
<td>Key 3</td>
<td>Content 3</td>
</tr>
<tr>
<td>Key 4</td>
<td>Content 4</td>
</tr>
<tr>
<td>ϕ</td>
<td>ϕ</td>
</tr>
</tbody>
</table>

Size = 4
Array implementation

Array of pairs (key, value)

• find(key k) : scan array to find key \(O(n) \)
• insert(key k, Object v):
 – Add the pair \((k, v)\) at the end of the array \(O(1) \)
 – Increase size by one
• remove(key k) \(O(n) \)
 – Scan array to find k
 – Shift left remaining elements
Array implementation

Remove('Key 2')

<table>
<thead>
<tr>
<th>Key</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Key 1</td>
<td>Content 1</td>
</tr>
<tr>
<td>Key 2</td>
<td>Content 2</td>
</tr>
<tr>
<td>Key 3</td>
<td>Content 3</td>
</tr>
<tr>
<td>Key 4</td>
<td>Content 4</td>
</tr>
<tr>
<td>Ø</td>
<td>Ø</td>
</tr>
</tbody>
</table>
Sorted Array implementation

<table>
<thead>
<tr>
<th>Key</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>x</td>
</tr>
<tr>
<td>7</td>
<td>x</td>
</tr>
<tr>
<td>8</td>
<td>x</td>
</tr>
<tr>
<td>12</td>
<td>x</td>
</tr>
<tr>
<td>15</td>
<td>x</td>
</tr>
<tr>
<td>16</td>
<td>x</td>
</tr>
<tr>
<td>21</td>
<td>x</td>
</tr>
<tr>
<td>33</td>
<td>x</td>
</tr>
<tr>
<td>42</td>
<td>x</td>
</tr>
<tr>
<td>53</td>
<td>x</td>
</tr>
<tr>
<td>55</td>
<td>x</td>
</tr>
<tr>
<td>55</td>
<td>x</td>
</tr>
<tr>
<td>62</td>
<td>x</td>
</tr>
</tbody>
</table>
Sorted array implementation

Array of pairs (key, value), *sorted by key*

- **find**(key k) : binary search to find key \(O(\log n)\)
- **insert**(key k, Object v):
 - Binary search to find where to insert, \(O(\log n)\)
 - Shift element right to insert new element, \(O(n)\) \(O(n)\)
- **remove**(key k)
 - Binary search to find key, \(O(\log n)\)
 - Shift left remaining elements, \(O(n)\)
Remove in a sorted Array

Remove('12')

<table>
<thead>
<tr>
<th>Key</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>x</td>
</tr>
<tr>
<td>7</td>
<td>x</td>
</tr>
<tr>
<td>8</td>
<td>x</td>
</tr>
<tr>
<td>12</td>
<td>x</td>
</tr>
<tr>
<td>15</td>
<td>x</td>
</tr>
<tr>
<td>16</td>
<td>x</td>
</tr>
<tr>
<td>21</td>
<td>x</td>
</tr>
<tr>
<td>33</td>
<td>x</td>
</tr>
<tr>
<td>42</td>
<td>x</td>
</tr>
<tr>
<td>53</td>
<td>x</td>
</tr>
<tr>
<td>55</td>
<td>x</td>
</tr>
<tr>
<td>62</td>
<td>x</td>
</tr>
</tbody>
</table>

Find: $O(\log n)$

Remove: $O(n)$
Linked-list implementation

Key1 Value1

Key2 Value2

Key3 Value3
Linked-list implementation

Linked-list where each node contain a pair (key, value)

• find(key k) : scan list to find key \(O(n)\)
• insert(key k, Object v):
 – Add the pair \((k, v)\) at the end of the list \(O(1)\)
• remove(key k)
 – Scan list to find k, \(O(n)\)
 – Remove node, \(O(1)\)

Note: Keeping the linked-list sorted does not help, as binary search can’t be done in time \(O(\log n)\) in linked lists. Why?
Implementations of dictionary

<table>
<thead>
<tr>
<th>Method</th>
<th>find</th>
<th>insert</th>
<th>remove</th>
</tr>
</thead>
<tbody>
<tr>
<td>Array</td>
<td>$O(n)$</td>
<td>$O(1)$</td>
<td>$O(n)$</td>
</tr>
<tr>
<td>Linked-list</td>
<td>$O(n)$</td>
<td>$O(1)$</td>
<td>$O(n)$</td>
</tr>
<tr>
<td>Sorted array</td>
<td>$O(\log n)$</td>
<td>$O(n)$</td>
<td>$O(n)$</td>
</tr>
</tbody>
</table>
A **binary search tree** (BST) is a binary tree such that for any node n,

- The elements of the left subtree of n have values smaller or equal to n
- The elements of the right subtree of n have values larger or equal to n

(In the figure, we show only the keys)
find('8')
BST - Find

Idea: 1) Start from the root of the tree
2) Choose if you should go to the left or right child.
3) Repeat until you find the key sought or get to a leaf.

Algorithm find(node n, key k)

Input: The node n at the root of the tree to explore.
The key k to find

Output: Returns one node with key equal to k
if (n = null) then return null
if (n.key = k) then return n
if (n.key > k) then return find(n.leftChild, k)
if (n.key < k) then return find(n.rightChild, k)

Can you write a non-recursive version of this algorithm?
insert('2')
BST - insert

Idea: 1) Find the leaf where the insertion will take place, by going down the tree as for the “find” algo.
2) Add a new left or right child to that leaf

Algorithm insert(node n, key k, object v)
Input: The key k and information i to be added to the subtree rooted at n. Assumes n!= null
Output: Inserts a new node (k,i) in the subtree rooted at n

if (k ≤ n.key) then
 if (n.leftChild != null) then
 insert(n.leftChild, k, v)
 else n.setLeftChild(new node(k,v));
else
 if (n.rightChild != null) then
 insert(n.rightChild, k, v)
 else n.setRightChild(new node(k,v));
Idea: 1) Find the node N to be removed using the “find” algo

2) If N is a leaf, simply remove it
 - If N is an internal node with only one child, replace N by its child
 - If N is an internal node with two children, N will be replaced by the node N’ that has the next key largest key after N.
To find N’:
 i) Follow the right child of N and then go down left children until no left child is found.
 The node found is N’
 Overwrite N by N’.
remove('6')
remove('8')
remove('3')
Algorithm remove(node root, key k)
Input: The key k of the node to be removed from the subtree rooted at n
Output: Removes node with key k and returns it.
node x ← find(root, k)
if (x=null) then return null // key k was not found
if (x.isALeaf()) then replace(x, null); return
if (x.leftChild = null or x.rightChild = null) then
 // x has only one child
 if (x.leftChild = null) then
 replace(x, x.rightChild) // x was right child
 else if (x.rightChild = null)
 replace(x, x.leftChild) // x was left child
else // x has two children, find successor of x
 suc ← x.rightChild
 while (suc.leftChild != null) do
 suc ← suc.leftChild
 x.value = suc.value
 x.key = suc.key
 replace(suc, suc.rightChild)
Replace

// A small utility function

Algorithm replace(node x, node y)

Input: Two nodes x and y

Output: Copies node y onto node x, overwriting x.

if (x.parent != null)
 if (x.parent.leftChild = x) then
 x.parent.setLeftChild(y)
 else
 x.parent.setRightChild(y)

if (y != null) then y.parent ← x.parent