Aggregating outputs
Jérôme Waldspühler, McGill University

Computational problems
- Multiplication: two numbers ⇒ product
- Sorting: set of objects ⇒ set of objects sorted
- Medical diagnosis: x-ray, lab tests ⇒ diagnosis
- Object recognition: image ⇒ tag
- Translation: source sentence ⇒ target sentence
- Editing: text ⇒ corrected text
- Planning: goal, constraints ⇒ sequence of actions

What is an algorithm?
“A finite set of rules which gives a sequence of operations for solving a specific type of problem” such that:
- **Input**: One or more inputs
- **Output**: One or more outputs which have a specific relation to the input(s)
- **Finiteness**: It must terminate after a finite number of steps.
- **Effectiveness**: Each operation needs to be basic
- **Definiteness**: Each step must be well defined and unambiguous.

(Knuth, 1973)

Operations & Controls
- **Sequence**
 - Operation 1
 - Operation 2
 - ... Operation n
- **Selection**
 - Operation 1
 - Condition
 - Operation 2
 - ... Operation n
- **Repetition**
 - Parallel
 - Operation 1
 - Operation n

Programming Frameworks
- **Frameworks**
 - Turkit (for Amazon Mechanical Turk)
 - Boto (for AMT)
 - PyBossa
- **Functionality**
 - Post HITs (Human Intelligence Tasks)
 - Store and retrieve previous HIT results

Evaluation
- **Correctness**
 - HIT are noisy. Their robustness must be estimated.
- **Efficiency**
 - Time (execution + task discovery)
 - Query Complexity
 - Cost
Designing HIT

Task routing

Task design

Task aggregation

Today

Aggregating output

Challenges:
- Output are noisy (lack of expertise)
- Humans are not always reliable (cheating)
- Cultural context may bias the answers

Goal: Automatic procedure to merge HIT results

Assumptions:
- It exists a “True” answer
- Redundancy helps

What is truth?

Objective truth
- exists freely or independently from a mind (E.g. ideas, feelings)
- Medical diagnosis, protein structure, number of birds...

Cultural truth
- shared beliefs of a group of people, often involving perceptual judgments.
- Is the music sad? Is this image pornographic? Is this text offending?...

Latent class models

Observed: HIT outputs

Latent (hidden): Truth, user experience, task difficulty.

Workers: Tasks

\[
\begin{bmatrix}
O_{11} & O_{12} & \cdots & O_{1N} \\
O_{21} & O_{22} & \cdots & O_{2N} \\
\vdots & \vdots & \ddots & \vdots \\
O_{M1} & O_{M2} & \cdots & O_{MN}
\end{bmatrix}
\]

Solution:

\[
\begin{bmatrix}
Y_1 \\
Y_2 \\
\vdots \\
Y_M
\end{bmatrix}
\]

- Often, the matrix is incomplete
- Ground truth may never been known

Majority vote

Observed output

\[
Y_n \propto \arg \max_j P(Y_n = j | O)
\]

Solution

\[
Y_n \propto \arg \max_j \frac{P(Y_n = j)}{P(O)}
\]

Majority vote (2)

\[
Y_n = \arg \max_j \frac{\prod^M_{m=1} P(O_{m,n} = a_{m,n} | Y_n = j) P(Y_n = j)}{P(O)}
\]

\[
Y_n = \arg \max_j \prod^M_{m=1} P(O_{m,n} = a_{m,n} | Y_n = j)
\]

\[
Y_n = \arg \max_j (1 - \epsilon) \sum^M_{m=1} h_{a_{m,n},j} - \epsilon \sum^M_{m=1} h_{a_{m,n},j}
\]

Agree

Disagree
Hidden factors

Task Characteristics
- Quality (e.g., blurry pictures)
- Difficulty (e.g., transcription of non-native speech)

Worker Characteristics
- Expertise (e.g., bird identification)
- Bias (e.g., mother vs college students)
- Physical Conditions (e.g., fatigue)

Incorporating worker quality

Observed output

Worker Characteristics

True answer

Example: Medical classification

Objective: Medical diagnosis by doctors

Model: Doctors have different rates and types of errors.
- $\pi_{jl}^{(k)}$ defines the probability of doctor k to record a value l when the true state is j.
- $\eta_{il}^{(k)}$ is the number of times the clinician k gets responses I from patient i.

Solution: Expectation-Maximization (EM) Algorithm.
(Dawid & Stone, 1979)

EM Algorithm in a nutshell

Goal: Maximize the likelihood

$$p(data \ on \ patient \ i) \propto \sum_{j=1}^{J} \prod_{k=1}^{K} \pi_{jl}^{(k)} \eta_{il}^{(k)}$$

- $\pi_{jl}^{(k)}$: probability of doctor k to record a value l when the true state is j.
- $\eta_{il}^{(k)}$: number of times the clinician k gets responses I from patient i.
- p_j: probability that a patient drawn at random has true response j.

We can calculate the maximum likelihood estimates:

$$\hat{\pi}_{jl}^{(k)} = \frac{\sum_{T_{ij} = 1} T_{ij} \eta_{il}^{(k)}}{\sum_{I} \sum_{j} T_{ij} \eta_{il}^{(k)}}$$

And estimate the probabilities:

$$\hat{p}_j = \frac{\sum_{T_{ij} = 1} I_j}{I}$$

Where T_i is the set of indicators ($T_{ij} = 1$ if j is the true response and 0 otherwise).
EM in a nutshell

1. Take initial estimates of the T's.
2. Compute \(n \)'s and \(p \)'s using previous equations.
3. Use estimates of \(n \)'s and \(p \)'s to compute new T's s.t.
 \[
 p(T_j = 1 \mid data) = \prod_{k=1}^{K} \left(\sum_{l=1}^{J} \prod_{q=1}^{Q} \left(\pi_{ql}^{(k)} \right) \eta_{il}^{(k)} p_j^{(l)} \right) \]
4. Iterate 2. and 3. until convergence.

Incorporating task difficulty

<table>
<thead>
<tr>
<th>Task difficulty</th>
<th>Observed output</th>
<th>Worker Characteristics</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\beta_n)</td>
<td>(O_{nm})</td>
<td>(\pi_m)</td>
</tr>
<tr>
<td>(Y_n)</td>
<td>(\pi_m)</td>
<td>(O_{nm})</td>
</tr>
</tbody>
</table>

Example

HIT: Select images containing at least one "duck"

- Competence varies with bird image,
- Worker's bias toward various mistakes,
- Difficulty of the image.

(Weinler et al., 2010)

Learning from imperfect data

So far we assumed that:
- The system can distribute HIT to many unique workers
- The worker performs enough task to estimate their performance rates.

Problem: Not always true…

Dekel & Shamir (2009):
1. Train classifier on unfiltered data
2. Use learned hypothesis to "guess" the truth and use it to remove bad workers.

Learning from Imperfect data

Other source of errors:
- Inaccurate labels
 - Modeling reliability of multiple workers
- Redundant labels
 - Synonym resolution techniques
Beyond labels

More sophisticated outputs:
- Ranking
- Clustering
- Beliefs

Challenges:
- How to decompose the problem?
- How to aggregate the results?

Ranking & voting

1. Pairwise comparison & creation of a ranking.

2. (When possible) Rank all objects & compute a consensus ranking.

Clustering

Objective: minimizing disagreement.

Techniques:
- HIT link or separate object & cluster are computed from these properties.
- HIT link object to predefined sets and consensus is performed.

Prediction markets

Hypothesis: Knowledge is distributed and can be accessed by aggregating the belief of many individuals.

Technique: Workers report their belief and we estimate the probability that an event happen based on mean & median.

References

Human Computation
Edith Law, Luis von Ahn
Morgan & Claypool Publishers