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ABSTRACT
We use Bayesian optimization methods to design games
that maximize user engagement. Participants are paid
to try a game for several minutes, at which point they
can quit or continue to play voluntarily with no further
compensation. Engagement is measured by player per-
sistence, projections of how long others will play, and
a post-game survey. Using Gaussian process surrogate-
based optimization, we conduct efficient experiments to
identify game design characteristics—specifically those
influencing difficulty—that lead to maximal engagement.
We study two games requiring trajectory planning, the
difficulty of each is determined by a three-dimensional
continuous design space. Two of the design dimensions
manipulate the game in user-transparent manner (e.g.,
the spacing of obstacles), the third in a subtle and possi-
bly covert manner (incremental trajectory corrections).
Converging results indicate that overt difficulty manipu-
lations are effective in modulating engagement only when
combined with the covert manipulation, suggesting the
critical role of a user’s self-perception of competence.
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INTRODUCTION
Interest has recently surged in applying game-like me-
chanics to enhance engagement in a variety of domains,
such as personal health [9, 14], scientific discovery [16,
6], and education [7, 25, 24, 23]. This research is based
on the hypothesis that increased engagement will im-
prove user experiences, data collection, and outcomes.
Although engagement is a broad construct [10], it has
been operationalized via subjective-self reports, physio-
logical measures, player preferences, and observations of
in-game player behavior [27]. In the present work we
measure engagement using player persistence, which has
been explored previously in game engagement research
[25, 36] and in the gambling psychology literature [15],
as well as using projections of other players’ persistence
and post-experiment subjective surveys engagement.

In gaming, as in related domains, a key design decision
that affects engagement is how difficult to make chal-
lenges presented to users. If challenges are trivial, users
become bored and lose interest; if challenges are over-
whelming and utterly impossible, users quit from frustra-
tion. Successful design identifies the not-too-easy, not-
too-hard challenge level that seduces users. We focus on
manipulations of difficulty to modulate engagement in
this work, although the methods we present are suitable
for exploring any aspect of game design to achieve any
measurable outcome.

Difficulty manipulations can be static or dynamic. Static
manipulations modulate initial game configuration and
design before game play begins based on population-
level play-testing data or simulations of player behavior.
Static manipulations have been used to match a par-
ticular game statistic [37, 13], reduce uncertainty about
an underlying cognitive model [30], and maximize suc-
cess or persistence rates in an educational game [23]. In
contrast, dynamic manipulations modulate game design
parameters on the fly in reaction to player behavior or
performance; examples include matching simulated play-
ers’ skill [2], selecting exercises that maximize informa-
tion per mistake [18], adapting AI to move into game
states that maximize persistence [11], and adjusting the
user interface to maximize performance [26]. Static and
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dynamic difficulty manipulations can be combined to dis-
cover a dynamic difficulty adjustment (DDA) scheme
that works across individuals [21]. The dynamic dif-
ficulty manipulation is parameterized and the param-
eters are determined to be appropriate for a population
of users. In this work we focus exclusively on static
difficulty manipulations but our method applies to any
parametrized measure of difficulty, including DDA.

Game difficulty parameters are typically based on the
player’s physical or mental capabilities (e.g., the player’s
reflexes and perceptual ability determine how small or
fast enemies can be before the player is overwhelmed),
but the player’s perception of difficulty is also important.
For instance, players are more engaged playing a game
in which suspenseful audio messages warn of potential
enemies than an identical game without the messages
[17]. players are also more engaged when they told that
the game has adaptive AI, when it actually does not
[8]. In these two examples, the player’s perception of
difficulty was manipulated, through suspense and pre-
game instructions, whilst the actual game difficulty was
held constant. In this work we introduce a novel twist in
which we manipulate the actual difficulty whilst holding
the perception of difficulty constant.

The goal of our work is to design games that maximize
engagement for a population of users via manipulation
of static difficulty. Ordinarily, design decisions are made
with A/B testing or with a designer’s intuitions. A
literature has begun to emerge that leverages the vast
quantities of user data that can be collected with online
software to optimize the design through more system-
atic and comprehensive experimentation. We will dis-
cuss past approaches that have been used to optimize
over design spaces, and we will present a novel approach
using a technique referred to as Bayesian optimization.
The method we present could theoretically be applied
to any game after it is released in the wild, leading to
automated improvement of the software with minimal in-
tervention by designers. In the optimization framework,
the role of designers is to specify a space of designs over
which exploration will take place.

Recent Research on Game Optimization
Recent research has used an on-line educational gaming
platform to search a design space to maximize player re-
tention. The platform, called BrainPop, is a popular site
used primarily in grade 4-8 classrooms. It offers multiple
games, and students can switch among the games. Us-
age is divided into sessions, and engagement is measured
by the length of a session and the number of rounds
played within a session. Lomas et al. [25] conducted
randomized controlled trials on four dimensions affect-
ing game difficulty, the Cartesian product of which had
2× 8× 9× 4 = 576 designs. Each of 69,642 anonymous
user sessions were randomly assigned to a design, sta-
tistical hypothesis testing showed that less challenging
designs were more engaging.

As an alternative to exhaustive search through design
space, Liu et al. [23] devised a heuristic, greedy search
strategy that involved selecting one dimension at a
time, marginalizing over the as-yet-unselected dimen-
sions. This strategy was used to identify the design max-
imizing user persistence in a five-dimensional space with
64 designs; we will return to this experiment shortly. Lo-
mas [24] used multi-armed bandits to efficiently search a
design space and minimize regret—defined as games that
users chose not to play. In experiments with relatively
few distinct designs (5 or 6), more games are played over-
all with bandit assignment of designs than with random
assignment.

The three search strategies just described—exhaustive,
greedy, and bandit-based—deal adequately with nom-
inal (categorical) dimensions but are not designed to
exploit ordinal (ranked) or cardinal (numerical) dimen-
sions. Further, the exhaustive and bandit strategies
cannot leverage structure in the design space unless
they make the strong and unreasonable assumption that
choices on the dimensions are independent.

BAYESIAN OPTIMIZATION
We propose an alternative methodology to search for
engagement-maximizing designs: Bayesian optimization
(BO). To motivate this methodology, suppose one wishes
choose a font size for a web site to maximize the dura-
tion that visitors stay on the site. We might posit a
quadratic model to formalize the relationship between
font size, denoted x, and stay duration, denoted y:
y(x) = β0 + β1x + β2x

2, where the coefficients β ≡
{β0, β1, β2} are unknown. If we randomly assign visitors
to conditions, as in A-B testing, we will collect many
noisy (x, y) observations. We can the fit the β parame-
ters to the observations and use the resulting parameter-
ized function, y(x) to identify the font size x that max-
imizes stay duration y. The function serves as a surro-
gate for the true implicit function that describes reality.
With sufficient data, the surrogate will be a good approx-
imation to the true implicit function. In this approach,
although each data point is noisy, each data point con-
strains the overall shape of the function; in concert, a
relatively small amount of noisy data can serve to iden-
tify the function optimum. This benefit arises because
the values of x define a continuum.

BO extends this simple method in three respects. First,
instead of using a parametric model—a model of fixed,
prespecified form—that makes strong assumptions about
the relationship between dependent and independent
variables, BO uses a more powerful class of nonpara-
metric surrogate models whose only constraint is that
the function y(x) must be locally smooth. Consequently,
BO can infer arbitrary sorts of structure in the design
space. Second, BO is a Bayesian methodology: instead
of searching for the best fitting parameter values, re-
ferred to as a maximum likelihood estimate, BO com-
putes the posterior distribution over parameter values.
The posterior effectively allows BO to assess the uncer-

 Engaging Players in Games #chi4good, CHI 2016, San Jose, CA, USA

5572



tainty in its predictions. Third, instead of choosing ran-
dom x for testing, BO uses active-selection heuristics to
select x in order to be data efficient. These heuristics
trade off exploration and exploitation, that is, trade off
testing regions of the design space where parameter val-
ues are uncertain versus those where optima are likely to
be given the data previously collected. These heuristics
leverage the Bayesian representation of uncertainty.

BO typically assumes a prior probability distribution
over all possible smooth functions, f(x). (This is a gen-
eralization of the notion of assuming a prior distribu-
tion over the parameters β.) This prior is known as a
Gaussian process (GP) prior. The term Gaussian comes
from the assumption that sets of points on the function
are jointly Gaussian. Rather than assuming a certain
degree of smoothness of the function, GPs are nonpara-
metric: the data specify the degree of smoothness. GPs
can model ordinal and cardinal dimensions to discover
functional relationships between designs and outcomes.
GPs are also efficient in their use of data [35], leading
to strong predictions with orders of magnitude less data
than utilized by previously tested methods. This effi-
ciency arises from the underlying assumption of smooth-
ness, i.e., nearby points in the design space yield similar
degrees of engagement. By contrast, the common multi-
armed bandits approach assumes that each arm, or de-
sign, is independent which prevents the method from
exploiting observations from similar designs.

BO can be used with models other than GPs. For exam-
ple, BO was recently used to adaptively select control
dynamics that maximize a user’s in-game performance
[26]. Here the user is assumed to behave according to a
Markov decision process (MDP). This approach outper-
formed the traditional multi-armed bandits approach. In
our case however, we want to adjust game designs stat-
ically over a population of users, which makes GPs a
natural choice. As we noted earlier, it is trivial to com-
bine static and dynamic manipulations, e.g., BO could
optimize the discount parameter of the MDP.

In our context, Bayesian optimization with GPs infers
a surrogate function that characterizes the relationship
between designs and a latent valuation. Each design is
a parameterization of a game, and the valuation is our
measure of engagement. Starting with a Gaussian pro-
cess (GP) prior and observations of human behavior, the
optimization procedure computes a posterior over func-
tions and uses this posterior to guide subsequent exper-
imentation. With a suitable exploration strategy, glob-
ally optimal solutions can be obtained.

Bayesian optimization with GPs has recently been ap-
plied to the design of a shoot-’em-up game. Zook et al.
[37] searched over several design parameters to achieve a
gameplay objective: having the enemy hit the player ex-
actly six times during an attack. Optimizing gameplay
is different than optimizing engagment in one critical
regard: the observation model required. The observa-
tion model is a probabilistic mapping from the latent

valuation represented by the GP to observed behavior
(called a likelihood in the general GP literature). Be-
cause engagement is a characteristic of the player’s cog-
nitive state, the observation model is a cognitive theory
of how the state of engagement induced by a given game
design influences behavior. Similar probabilistic models
have been developed for a variety of human responses,
e.g., preference [5], two-alternative forced choice with
guessing [21], and similarity judgment [31]. Here, we
develop and justify a probabilistic model to predict be-
havioral measures of engagement from the latent index
of engagement.

An Illustration of the Bayesian Approach
In this section, we re-analyze an existing data set and
show the value of Bayesian methods. The data set is
from Liu et al. [23], who constructed a game called
Treefrog Treasure to teach fractions. In this game, the
player guides a frog to jump to a series of targets which
are specified as fractions on a number line. The game can
be configured in one of 64 designs, specified in a discrete
2× 2× 2× 4 space. The dimensions determine the rep-
resentation of the target and the number line (pie chart
or symbolic), presence/absence of tick marks and ani-
mations, and the number of hints provided (1-4). Over
360,000 trials were collected from 34,000 players with de-
sign changing randomly every other trial. Players could
quit the game on any trial at their discretion. Engage-
ment is quantified by the probability that, for a trial of
design A, a player will complete the next trial (and not
quit). We call this the persistence induced by A.

We use the data resampling and aggregation procedure
of Liu et al. to marginalize over two irrelevant aspects
of the data—the design of the next trial and the specific
fractions tested. Figure 1a shows the empirical persis-
tence across designs, and Figure 1b shows the same result
but smoothed via a GP classifier. The model provides a
clear interpretation of which design dimensions matter,
in contrast to the raw data. In support of the robust-
ness of the model, it produces the same interpretation
across regroupings of the data. Further, the model pro-
duces a prediction of engagment over the design space
that is consistent with that obtained by the approach
of Liu et al. [23], which they validated on a test set.
For example, persistence is higher without animations
(the bottom row of cubes). Animations provide a visual
tutorial in dividing up number lines into fractions, and
might make problems easier; however, they also take con-
trol away from the player for several seconds and could
therefore be distracting. These results suggest that the
distraction effect overpowers any possible learning gains,
underscoring the importance of engagement in any opti-
mization process for online games.

This simulation used a logistic observation model—
yielding observations in [0,1]—and a squared exponen-
tial kernel with ARD distance measure, for a total of
6 hyperparameters which were drawn via elliptical slice
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Figure 1. Persistence probability of Treefrog Treasure players over the design space: (a) empirical mean; (b) GP-
posterior mean. Each disk represents a design. Color denotes persistence and diameter is inversely proportional to
variance of (a) aggregated observations and (b) the GP posterior.

sampling. This kernel effectively computes a weighted
Hamming distance on the binary dimensions.

From Persistence to Total Play Duration
The logistic observation model is a natural choice to
characterize persistence on a single trial. However, this
model assumes that after each trial, the player flips a
biased coin to decide whether to continue. Because the
coin flips after each trial are independent of one another,
the model predicts an exponential distribution for total
play duration.

The exponential distribution is not a particularly realis-
tic characterization of human activity times. The best
studied measure of time in human behavior is the re-
sponse latency, which has been characterized by posi-
tively skewed distributions in which the variance grows
with the mean, e.g., an ex-Gaussian [12] or Weibull den-
sity [32]. Evidence about usage-duration distributions
is harder to find. Miyamoto et al. [28] performed an
analysis of 20 MOOCs and found a positively skewed
distribution for both the number of sessions and hours a
student would engage with a course. Andersen et al. [1]
also observed what appears to be a mixture of positively
skewed distribution and an impulse near 0 representing
individuals who lost interest immediately.

In order for Bayesian optimization to produce sensible
results, we require an observation model that represents
the mapping from latent states of engagement to a play
duration. In the next section, we propose four alter-
native observation models that seem well matched to
empirical distributions. We evaluate these models via
simulation experiments.

Selecting an Observation Model
Our goal is to identify a model that is robust to mis-
specification: we would like the model to work well
even if real-world data—engagement as measured by the
duration of play—are not distributed according to the
model’s assumptions. The observation models must have
three properties to be suitable for representing play-
duration distributions: (1) nonnegative support, (2)

variance that increases with the mean, and (3) probabil-
ity mass at zero to represent individuals who express no
interest in voluntary play. To satisfy these three proper-
ties, our generative process assumes that play duration,
denoted V , is given by V = CT , where

C|π ∼ Bernoulli(π)

is an individual’s binary choice to continue playing or not
and T is the duration of play if they continue. Criterion
1 rules out the popular ex-Gaussian density because it
has nonzero probability for negative values. We tested
four alternative distributional assumptions for T :

T ∼ Gamma
(
α, α

ef(x)

)
T ∼Weibull

(
k, ef(x)

Γ(1+ 1
k )

)
T ∼ ln N

(
f(x)− σ2

2 , σ
2
)

T ∼Wald
(
λ, ef(x)

)
where x is a game design and f(x) is the latent valuation
and has a GP prior. The first parameter of the Gamma,
Weibull, and Wald distributions specify the shape, and
the second parameter specifies the rate, scale, and mean,
respectively. The two parameters of the log-Normal dis-
tribution specify the mean and variance, respectively.
These four distributions all share the same mean, ef(x),
but have different higher-order moments. Note that the
Gamma distribution includes the exponential as a spe-
cial case. To allow a design’s valuation f(x) to influence
the choice C as well as the play duration T , we define
logit(π) ≡ β0 + β1f(x). This general form includes de-
sign invariance as a special case (β1 = 0).

We performed synthetic experiments with each of these
four observation models. To evaluate robustness to mis-
specification, we evaluated each model using the same
four models to simulate the underlying generative pro-
cess (i.e., to generate synthetic data meant to represent
human play durations). Synthetic data for these exper-
iments were obtained by probing a valuation function,
f(x), that represents the engagement associated with a
design x. For f(x), we used a mixture of two to four
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Figure 2. Simulation experiment. (a) Examples of the 2D functions used for generating synthetic data. (b) Results of
synthetic experiment. The left and right plots depict the mean function value (higher is better) and the mean distance to
the true optimum (lower is better) for various observation models. Results are averaged over four different generative-
process models, 100 replications of each simulation, the last 10 trials per replication. Error bars indicate ±1 standard
error.

Gaussians with randomly drawn centers, spreads, and
mixture coefficients, defined over a 2D design space. For
examples, see Figure 2a. We generate synthetic obser-
vations by mapping the function value through the as-
sumed generative process. The goal of Bayesian opti-
mization is to recover the function optimum from syn-
thetic data. We performed 100 replications of the simu-
lated experiment, each with a different randomly drawn
mixture of Gaussians and with β0 = 0 and β1 = 1. For
the generative models, we need to assume values for the
free parameters, and we used α = 2, k = 2, σ2 = 1 and
λ = 4. (These parameters settings are used to generate
the synthetic data and are not shared with the Bayesian
optimization method; rather, the method must recover
these parameters from the synthetic data.)

To perform Bayesian optimization, we require an active-
selection policy that determines where in design space
to probe next. The probability of improvement and ex-
pected improvement policies are popular heuristics in the
Bayesian optimization literature. Both policies balance
exploration and exploitation without additional tun-
ing parameters. However, since the variance increases
with the mean in our observation models, both poli-
cies tend to degenerate to pure exploitation. Instead,
we chose Thompson sampling [4], which is not suscep-
tible to this degeneracy. For each replication of the
simulated experiment, we ran 40 active selection rounds
with 5 observations (simulated subjects) per round. The
GP used the squared exponential Automatic-Relevance-
Determination (ARD) kernel whose hyperparameters
were inferred by slice sampling.

For each combination of the four distributions as ob-
servation model and for each combination of the four
distributions as generative model, we ran the battery
of 100 experiment replications each with 200 simulated
subjects. The simulation results are summarized in Fig-
ure 2b. We collected two different measures of perfor-
mance. The bar graph on the left shows, for each distri-
bution as the observation model, the mean play duration

over the 200 simulated subjects and the 400 replications
of each experiment (100 replications with each of four
generative models). The bar graph on the right shows
the mean distance of the inferred optimum to the true
optimum. Superior performance is indicated by a higher
play duration and a lower distance to the true optimum.
The log-Normal distribution as observation model shows
a slight advantage over the Weibull and Gamma distri-
butions, and a large advantage over the Wald. By both
measures of performance, the log-Normal distribution is
most robust to incorrect assumptions about the underly-
ing generative process. We use this observation model in
the human studies that follow. This decision may seem
strange in light of recent work that shows that Weibull
is appropriate to model play times [34]. But that work
measured total play time across multiple sessions as op-
posed to our present setup where we measure play time
in a single session.

EXPERIMENTS
Let us take a step back and remind the reader of our
overall agenda. We wish to maximize retention (play
duration) over a game design space. The dimensions
of this space affect difficulty. We described a powerful
methodology, Bayesian optimization, that can be used to
efficiently search a continuous, multi-dimensional design
space to identify an optimum design. Through a re-
analysis of existing data and through simulation studies,
we demonstrated that this methodology is promising and
effective, and we developed a model that is appropriate
for the dependent variable of play duration.

Finally, we can now turn to describing experiments. Our
experiments were conducted using Amazon’s Mechani-
cal Turk platform. The inspiration for using this plat-
form came from earlier studies we conducted on Turk. In
one study requiring participants to induce concepts from
exemplars, we received post-experiment messages from
participants asking if we could provide additional exem-
plars for them to use to improve their skills. In another
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study involving foreign language learning, participants
who completed the study asked for the vocabulary list.
In all cases, the participants’ motivation was to learn,
not to receive additional compensation.

Given that Turk participants are willing to voluntarily
commit time to activities that they find engaging, we
devised a method for measuring voluntary time on ac-
tivity or VTA. In each of our experiments, participants
are required to play a game for sixty seconds. During
the mandatory play period, a clock displaying remain-
ing time is displayed. When the mandatory play period
ends, the clock is replaced by a button that allows the
participant to terminate the game and and receive full
compensation. Participants are informed that they can
continue playing with no further compensation. VTA is
measured as the lag between the button appearance and
the button press.

The traditional method of assessing engagement is a
post-experiment survey (e.g., [29, 27]). Recently, how-
ever, VTA-like measures have been explored. Sharek and
Wiebe [33] tested several versions of a game on Turk and
quantified engagement by the frequency of clicking on a
game clock to reveal whether the minimum required play
time had passed. Also, in work we described earlier [25,
24, 23], engagement was measured by how likely a player
is to switch to a different game. In gambling psychology,
VTA has been extensively used to study the effect of
near-misses on time spent playing slot machines [15].

Overt Versus Covert Difficulty Manipulations
In our experiments, we distinguish between overt and
covert manipulations of game difficulty. Overt manipu-
lations are those to which players readily attribute causal
effects on difficulty, such as the speed of an enemy or the
height of a wall. Overt manipulations tend to be visually
salient and directly perceived from the game lay out. In
contrast, covert manipulations are more subtle and in-
volve aspects of the game to which players may not be
attending or may not have an explicit theory relating
these manipulations to game difficulty. An example of a
covert manipulation might be the proximity that a bul-
let’s trajectory needs to come to an enemy in order to
hit the enemy.

Although we know of no prior work in which difficulty
is covertly manipulated, there is a related literature in
which the appearance of difficulty is manipulated with-
out affecting the actual difficulty. Some of this work
falls under the banner of the illusion of control [19]. In a
classic study, subjects drew a card against an awkward
or confident-looking confederate, winning the round if
they had the highest card. Before each round, sub-
jects placed a bet that they’d win. Subjects who played
against the awkward confederate bet, on average, 47%
more than those who played against a confident confed-
erate, despite the objective probability of winning—the
difficulty—being the same in both cases. In the con-
text of video games, two examples we cited earlier [17,

8] show that players are more engaged when the per-
ception of challenge was manipulated, rather than the
actual challenge. We hypothesize that the effectiveness
of these manipulations is due to the fact that individuals
readily overestimate their sense of agency—the amount
of control they have over an outcome [22]. Unlike these
previous efforts that manipulate the perception of dif-
ficulty whilst keeping the actual difficulty constant, a
covert manipulation does the opposite. We may assist
the player in navigating a game, thereby changing the
actual difficulty, whilst giving the play an illusion that
success is attributed to their own competence and skill.

In our experiments, we evaluate the effectiveness of overt
versus covert difficulty manipulations on engagement.

Two Games and Three Difficulty Manipulations
The two games we studied are simple, popular
trajectory-planning games: Flappy Bird and Spring
Ninja. In Flappy Bird, the objective is to keep a bird
in the air by flapping its wings to resist gravity and
avoid hitting the ground, the top of the screen, or verti-
cal pipes (Figure 3a). In Spring Ninja, the objective is
to wind a spring to the proper tension so that the player
jumps from one pillar to the next and avoids falling to
the ground (Figure 3b). The player holds and releases a
mouse button to jump. The longer the player holds, the
further the ninja jumps. Both Flappy Bird and Spring
Ninja involve trajectory planning, but the former re-
quires real-time decision making whilst the latter allows
players to take their time in planning the next jump.

We manipulated two overt factors affecting the difficulty
of Flappy Bird—the horizontal spacing between pipes
and the vertical gap between pipes—as well as one covert
factor, which we refer to as the assistance. Assistance
acts as a force that, when the wings are flapped, steers
the bird toward the gap between the next pair of pipes.
In Spring Ninja, we manipulated two overt factors—the
horizontal spacing between the pillars and the visible
extent of a projected trajectory (the blue curve in Fig-
ure 3b)—as well as the amount of covert assistance. The
assistance in Spring Ninja corrects the trajectory of the
player if the trajectory falls within a certain distance of
the ideal trajectory. In both games, the assistance level
can be adjusted to range from no assistance whatsoever
to essentially a guarantee that nearly any action taken
by the player will result in success. For moderate lev-
els of assistance, the manipulation can be quite subtle.
We have no experimental evidence that players were un-
aware of our ‘covert’ support, but anecdotally, players
who tested our games with low-to-moderate levels of as-
sistance were surprised when they were informed that
game dynamics were modulating to guide them along.
Indeed, it was shocking to realize that one could per-
form relatively well with eyes closed.

Flappy Bird: Experimental Methodology and Results
We conducted two studies with Flappy Bird. In the first
study, we tested 958 participants. Each participant was
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(a)

(b)
Figure 3. (a) Flappy Bird: The player flaps bird’s wings
to keep it aloft and to avoid hitting pipes. (b) Spring
Ninja: The player jumps from one pillar to another by
compressing springs in the ninja’s shoes. The blue tra-
jectory is the projected jump path for the given spring
compression level.

assigned to a random point in the three dimensional,
continuous design space. The large number of partici-
pants in this random-assignment experiment enabled us
to fit an accurate model that characterizes the relation-
ship between the game design and latent engagement,
much as we fit data from the Treefrog Treasure game
which was collected by random assignment (Figure 1).
In the second study, we ran the experiment again from
scratch and tested 201 participants. Participants were
assigned to designs chosen by an active-selection policy,
Thompson sampling as described earlier. Active selec-
tion chooses a design for each participant based on the
model estimated based on all previous participants.

Our pilot experiments suggested that randomly seed-
ing Bayesian active selection is necessary, as is often
done with BO. Consequently, we assigned the first 55
participants in the active-selection study to a Sobol-
generated set of random points in design space. Sobol
sequences [20] are attractive because they evenly cover
design space, as opposed to a sequence generated from
a pseudo-random number generator. After the seeding
phase, we performed rounds of Bayesian optimization us-
ing Thompson sampling with five subjects tested at each
selected design.

The design space consisted of three dimensions: pipe
spacing, pipe gap, and covert assistance. Each dimen-

sion was quantized to 10 levels.1 Participants were given
game instructions and were told that to receive compen-
sation (20 cents) they must play for 60 seconds, but they
could continue playing without further compensation for
as long as they wished. During the mandatory-play pe-
riod, a countdown timer in the corner of screen indicated
the time remaining. During the mandatory-play period,
multiple rounds of the game were played. Each round
was initiated with a mouse click and ended when the bird
crashed. When the mandatory time was reached, the
time-remaining display was replaced by a ‘finish’ but-
ton. Because individuals might not notice the button
mid-round, we excluded the round in play, and defined
VTA to be the time (in seconds) beginning with a mouse
click to initiate the first round once the finish button had
appeared.

At any time, clicking finish took participants to a final
screen that indicated how much time they had spent be-
yond the mandatory time; this number could be zero
if no new rounds were played following the mandatory
time. Participants were asked to enter how long they
expected other mechanical turk players to voluntarily
play. The two dependent measures available then were
the experiential and projected VTA. In pilot experiments
we treated both measures as independent so there were
two observations per participant. However, this led to
non-smooth model fits to the data so we decided to use
the projected VTA exclusively as our measure of engage-
ment. Projected VTA is less contaminated by confounds,
e.g., the player would have liked to continue but had
another obligation, or the player continued for several
rounds only because they had not noticed the finish but-
ton. Although it may seem that we are ignoring the
important behavioral signal in the experiential VTA, we
are still making use of that signal because the experi-
ential VTA is provided as a reference when participants
are asked to specify the projected VTA. In the random-
assignment study, we displayed the experiential VTA on
the screen and asked participants to enter the projected
VTA. In the active-selection study, to emphasize the ex-
periential VTA, we incorporated a slider control that is
initially anchored on their experiential VTA (see top of
Figure 4). The slider had a range of at least 0-100, and
if the experiential VTA was greater than 100, the top
end was set to twice the experiential VTA, rounded up
to the nearest multiple of 100.

In the active-selection study, we included a short ques-
tionnaire about the participant’s experience in the game.
The questionnaire consisted of 6 true/false items with
each item phrased such that “true” corresponds to an
engaging game. The first four phrases in the question-
naire (Figure 4) were taken from the Game Engagement
Questionnaire [3].

1This quantization may seem strange given that BO can han-
dle continuous dimensions. However, 10 levels allows for fine
distinctions, and allows us to avoid local-optimization tech-
niques such as hill climbing needed for continuous spaces.
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Figure 4. The post-experiment questionnaire.

Figure 5a and 5b show the model posterior mean VTA
over the three dimensional design space in the random-
assignment and active-selection studies, respectively.
The remarkable finding is that the two independent stud-
ies yield very similar outcomes: the optimal design iden-
tified by the two studies is in almost exactly the same
point in design space (the red squres in the Figures).
The random-assignment study should yield reliable re-
sults due to the relatively large number of participants
tested.

An important question here is whether the predictions
of the model are related to the observations. Because
repeated observations within the same game design are
highly variable, we averaged observations for each design
tested and determined the correlation with the expected
VTA predicted by the model. We included in this anal-
ysis only designs for which we had four or more observa-
tions in our random-assignment experiment. We obtain
a Spearman correlation of 0.65. This coefficient is close
to the value obtained by fitting the model to synthetic
data generated by the model itself (0.50±0.1, 10 replica-
tions). The fact that the model predicts the actual data
as well as if not better than the synthetic data suggests
that the model is appropriate for the task. (We used the
random-assignment experiment for this analysis; a sim-
ilar analysis for the active-selection experiment is not
sensible given the dependence among samples.)

To compare the efficiency of random-assignment vs. ac-
tive selection, we randomly sampled 200 observations
from the random-assignment study and fitted our model
using only those observations. We then calculated the
distance between the optimum found using 200 observa-
tions and the optimum found using the full set of 958
observations. We replicated this procedure 50 times,
each time sampling a different subset of observations.
The mean distance over these 50 replications was 0.70
(std. error ±0.03). In contrast, the distance was 0.28

in the active selection study, using the same number of
observations. This result indicates that with matched
budgets for data collection, the active-selection study is
more efficient than random selection in converging on
the optimum.

The Figures indicate that engagement is sensitive to each
dimension in the design space. There is not much hint
of an interaction across the dimensions. Notably, with
minimal covert assistance (the upper-left array in each
Figure), the other two overt difficulty dimensions have
little or no impact on engagement, and are not sufficient
to motivate participants to continue playing voluntarily.
Thus, we conclude that covert assistance is key to engag-
ing our participants. Consistent with the hypothesis that
participants need to be unaware of the assistance, the ex-
periments show that engagement is poor with maximum
assistance (the lower-right array in each Figure). With
maximum assistance, the manipulation causes the bird
to appear to be pulled into the gap, and this is therefore
no longer covert in nature.

To obtain further converging evidence in support of the
optimum identified in Figures 5a and 5b, we fitted a
Gaussian process model to questionnaire scores. We de-
fined the score as the number of ’true’ responses made by
the participant. The higher the score, the higher the en-
gagement because we phrased questionnaire items such
that an affirmative response indicated engagement. We
used Gaussian process regression with a Gaussian ob-
servation model to fit the scores. (Our VTA model is
appropriate for fitting play-time observations, whereas
the scores lie in a fixed range of 0-6.) Figure 5c shows
the model posterior mean score over the three dimen-
sional design space. The notable result here is that
the posterior mean score looks similar to the posteriors
from the random-assignment and active-selection stud-
ies. More importantly, the predicted optima—marked by
red squares—lie in almost exactly the same place in 5a,
5b and 5c. Whereas the posterior inferred from the ques-
tionnaire scores looks different, e.g., for assistance=1, we
remind the reader that the objective of BO is to find
the maximum of a function, rather than map out the
full design space. The consistency across studies and
across response measures provides converging evidence
that increase our confidence in the experiment outcomes,
and also provide support for the appropriateness of us-
ing VTA as measure of engagement in place of a more
traditional questionnaire.

Spring Ninja: Experimental Methodology and Results
We conducted a single study with Spring Ninja with
325 participants. As in the active-selection Flappy Bird
study, we seeded the optimization procedure with par-
ticipants evaluated with designs generated from a Sobol
sequence, 54 in total. The remaining participants were
tested in groups of five with a game design chosen from
an active-selection policy, Thompson sampling. We did
not conduct a random-assignment study with Spring
Ninja due to time constraints and because, in addition
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(a)

(b)

(c)

Figure 5. Bayesian model fits of VTA (in seconds)
over the Flappy Bird design space for (a) the random-
assignment and (b) active-selection studies. Each array
corresponds to a fixed level of assistance, with the upper
left array being no assistance (level 0) and the lower right
array being maximal assistance (level 1). For each fixed
level of assistance, the corresponding array depicts model-
fit VTA across the range of horizontal spacings between
pipes (x axis) and vertical gaps (y axis). The pipe gap and
pipe spacing is calibrated such that a level of 0 is a chal-
lenging game, unlikely to be played well by a novice, and
1 is readily handled by a novice. The circles correspond
to observations with the radii indicating the magnitudes
of the observations. At locations with multiple observa-
tions, there are co-centric circles. Red squares indicate
the locations of the predicted global maximum. (c) An
analogous Bayesian model fit to the questionnaire score,
which indicates the number of items with an affirmative
response. Higher scores indicate greater engagement.

to cited literature on the efficiency of Bayesian optimiza-
tion, we have already established the effectiveness of our
active selection method in Flappy Bird, which is a simi-
lar three-parameter game.

The design space of Spring Ninja consisted of three di-
mensions: the spacing between pillars, the visible ex-
tent of the projected trajectory and the covert assis-
tance. Each dimension was quantized into 10 levels in
the range 0–1 with 0 and 1 corresponding to difficult
and easy game settings, respectively. The optimization
procedure sought to maximize the VTA, defined for this
game as the number of jumps a player would make after
the appearance of the finish button.

As in the Flappy Bird studies, Spring Ninja participants
were required to play for a minimum of 60 seconds in
order to receive compensation (20 cents). A countdown
timer was shown in the corner of the screen and replaced
with a finish button when the timer reached zero. The
timer counted down only from the time at which the
participant began compressing the spring and stopped
after the ninja landed on a pillar or fell off the screen.
When the player falls off the screen, a game-over screen
is shown offering the player to start a new game or—if
the mandatory play time had elapsed—finish the exper-
iment. When the finish button is clicked, participants
are redirected to a post-experiment screen in which they
specify their projection of others’ VTA and respond to
the same questionnaire as in the Flappy Bird studies
(Figure 4).

We measure the VTA in Spring Ninja differently than in
Flappy Bird because the former is turn-based whereas
the latter is continuous. Specifically, Spring Ninja play-
ers are likely to notice between jumps when the count-
down timer hits zero and the finish button appears be-
cause they are not under time pressure. We could de-
fine VTA as the time after the finish button appears
but this poses a problem when we ask participants for
the projected VTA since there is a mismatch between
the game’s sense of time—time advances only when the
Ninja is flying or about to fly—and real world time. So
a participant would be perplexed if they found out that
they have played for only 20 seconds extra when they
have actually played for one more minute. Indeed, we
received several emails from pilot participants complain-
ing about this issue. To avoid this problem, we instead
measure the number of jumps after the finish button ap-
pears. The number of jumps is agnostic to the way the
game measures time and is a non-negative quantity that
is directly proportional to VTA so we can still use our
VTA model. We shall continue to refer to the number
of voluntary jumps as the VTA.

Figures 6a and 6b show model posteriors over VTA (in
number of jumps) and questionnaire scores, respectively,
fit in the same way as we did in the Flappy Bird study.
High engagement is obtained for the mid-range of design
parameter settings. The predicted optima by the two
measures are very close, as indicated by the red squares.
Consistent with the Flappy Bird study, the Spring Ninja
results indicate that the two overt difficulty manipula-
tions have little impact on engagement when no covert
assistance is provided (the upper left array), yet with
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(a)

(b)

Figure 6. (a) Model predicted VTA (in ninja jumps) over
the Spring Ninja design space. Each array shows VTA for
a range of trajectory lengths and horizontal spacings be-
tween the pillars. The trajectory length and pillar spac-
ing is scaled such that 0 is a challenging game, unlikely
to be played well by a novice, and 1 is readily handled
by a novice. Each of the 10 arrays represents a fixed
level of assistance, with 0 being none and 1 being maxi-
mal. Each cell in an array corresponds to a setting of the
trajectory length and the horizontal spacing between pil-
lars. The circles correspond to observations with the radii
indicating the magnitudes of the observations. At loca-
tions with multiple observations, there are co-centric cir-
cles. Red squares indicate the locations of the predicted
global maximum. (b) An analogous Bayesian model fit
to the questionnaire score, which indicates the number of
items with an affirmative response. Higher scores indicate
greater engagement.

moderate covert assistance, engagement significantly in-
creases.

DISCUSSION
In this article, we’ve applied an increasingly popular tool
from the machine learning literature, Bayesian optimiza-
tion, to a problem of intense interest in the fields of
gaming and gamification: How do you design software
to engage users? In contrast to traditional A/B testing,
Bayesian optimization allows us to search a continuous
multi-dimensional design space for a maximally engaging
game design. Bayesian optimization is data efficient in
that it draws strong inferences from noisy observations.
Consequently, experimentation with users on suboptimal
designs can be minimized. When placed in a live con-
text, Bayesian optimization can be used to continually
improve the choice of designs for new users.

Bayesian optimization is a collection of three compo-
nents: (1) Gaussian process regression to model design
spaces, (2) a probabilistic, generative theory of how ob-
servations (voluntary usage times) are produced, and (3)
an active-selection policy that specifies what design to
explore next. A key component of the research described
in this article is our exploration of candidate generative
theories, and a contribution of our work is the specifica-
tion of a theory that is robust to misspecification, i.e.,
robust to the possibility that humans behave differently
than the theory suggests.

We collected multiple measures of engagement, includ-
ing experiential and predicted voluntary time on activity
and a post-usage survey with questions indicative of en-
gagement. We argue that predicted voluntary time may
be a better measure than experiential, if the experiential
time is used as an anchor to predict the usage time of
other individuals. We also showed that usage time and
the survey yield highly consistent predictions of maxi-
mally engaging designs. The converging evidence from
these two very different measures gives us confidence in
our interpretations of the data.

Beyond our methodological contributions, we explored a
fundamental question regarding engagement and game
difficulty. Moving beyond the well-trodden notion that
game difficulty can affect engagement, we compared
covert versus overt manipulations of difficulty. We found
that overt manipulations on their own were relatively
ineffective in modulating engagement (at least over the
range of designs we tested), yet they became quite effec-
tive when coupled with a covert manipulation in which
we provided assistance in a subtle manner, possibly skirt-
ing the player’s awareness. We believe that players at-
tributed the improved performance resulting from our
covert manipulation of game dynamics to their own com-
petence. Their boost in perceived competence led to
increased engagement. We envision that this covert-
assistance trick could be used to draw players into a game
and then be gradually removed as the player’s true skill
increases.

In future research, we plan to address three limitations
of the present work. First, we would like to conduct
longer-term usage studies to show that the effects we
observe on engagement scale up with longer use of soft-
ware. Second, we would like to explicity evaluate the
player’s perception of task difficulty under different lev-
els of covert assistance, rather than relying on anecdotal
evidence. Third, rather than optimize design parameters
for a user population as a whole, the same methodology
could be applied to optimize for a specific user, condi-
tioned on their play history. For such a task, the data
efficiency of Bayesian optimization is critical.
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