Aggregating outputs

Jérôme Waldispühl, McGill University
Designing HIT

Input → Task routing → Task design → Task aggregation → Output

Today
Aggregating output

Challenges:
• Output are noisy (lack of expertise)
• Humans are not always reliable (cheating)
• Cultural context may bias the answers

Goal: Automatic procedure to merge HIT results

Assumptions:
• It exists a “True” answer
• Redundancy helps
What is truth?

Objective truth
exists freely or independently from a mind (E.g. ideas, feelings)

Medical diagnosis, protein structure, number of birds...

Cultural truth
shared beliefs of a group of people, often involving perceptual judgments.

Is the music sad? Is this image pornographic? Is this text offending? ...
Latent class models

Observed: HIT outputs
Latent (hidden): Truth, user experience, task difficulty.

- Often, the matrix is incomplete
- Ground truth may never been known
Majority vote

Observed output

True answer
Majority vote (2)

\[
Y_n = \arg \max_j P(Y_n = j \mid O)
\]

\[
Y_n = \arg \max_j \frac{\prod_{m=1}^{M} P(O_{n,m} = o_{n,m} \mid Y_n = j)P(Y_n = j)}{P(O)}
\]

\[
Y_n \propto \arg \max_j \prod_{m=1}^{M} P(O_{n,m} = o_{n,m} \mid Y_n = j)
\]

\[
Y_n \propto \arg \max_j (1 - \varepsilon) \sum_{m=1}^{M} 1_{(o_{n,m} = j)} \cdot \varepsilon \sum_{m=1}^{M} 1_{(o_{n,m} \neq j)}
\]
Hidden factors

Task Characteristics
• Quality (e.g., blurry pictures)
• Difficulty (e.g., transcription of non-native speech)

Worker Characteristics
• Expertise (e.g., bird identification)
• Bias (e.g., mother vs college students)
• Physical Conditions (e.g., fatigue)
Incorporating worker quality

Observed output Worker Characteristics

O_{nm} π_{m}

True answer
Example: Medical classification

Objective: Medical diagnosis by doctors

Model: Doctors have different rates and types of errors.
- $\pi_{jl}^{(k)}$ defines the probability of doctor k to declare a patient in state l when the true state is j,
- $\eta_{il}^{(k)}$ is the number of time the clinician k gets responses l from patient i.

Solution: Expectation-Maximization (EM) Algorithm.

(Dawid & Skene, 1979)
EM Algorithm in a nutshell

Goal: Maximize the likelihood

\[
p(O \text{ on patient } i) \propto \sum_{j=1}^{J} p_j \prod_{k=1}^{K} \prod_{l=1}^{J} (\pi_{jl}^{(k)}) \eta_{il}^{(k)}
\]
EM Algorithm in a nutshell

Idea:
1. Obtain some initial estimates of the missing data,
2. [Expectation step] Calculate the maximum likelihood estimates for the quantities of interest as if the missing data had been found,
3. [Maximization step] Calculate new estimates of the missing data,
4. Repeat steps 2. and 3. until both the maximum likelihood estimates and the missing data estimates converge.
EM Algorithm in a nutshell

We can calculate the maximum likelihood estimates:

$$\hat{\pi}^{(k)}_{jl} = \frac{\sum_i T_{ij} \eta_{il}^{(k)}}{\sum_l \sum_i T_{ij} \eta_{il}^{(k)}}$$

And estimate the probabilities:

$$\hat{p}_j = \frac{\sum_i T_{ij}}{I}$$

Where T_{ij} is the set of indicators ($T_{ij}=1$ if j is the true response and 0 otherwise).
EM in a nutshell

1. Take initial estimates of the T's.
2. Compute \(\pi \)'s and p’s using previous equations
3. Use estimates of \(\pi \)'s and p’s to compute new T’s s.t.

\[
p(T_{ij} = 1 \mid \text{data}) = \prod_{k=1}^{K} \prod_{l=1}^{J} (\pi_{jl}^{(k)})^{\eta_{il}^{(k)}} p_j \div \sum_{q=1}^{J} \prod_{k=1}^{K} \prod_{l=1}^{J} (\pi_{ql}^{(k)})^{\eta_{il}^{(k)}} p_q
\]

4. Iterate 2. and 3. until convergence
Incorporating task difficulty

Task difficulty: β_n → Observed output: O_{nm} ← Worker Characteristics: Π_m

True answer: Y_n
Example

HIT: Select images containing at least one “duck”

- competence varies with bird image,
- worker’s bias toward various mistakes,
- difficulty of the image.

(Welinder et al., 2010)
Example

• 200 waterbirds
• 40 pictures w/o birds
• 40 workers

(Welinder et al., 2010)
Learning from imperfect data

So far we assumed that:

• The system can distribute HIT to many unique workers
• The worker performs enough task to estimate their performance rates.

Problem: Does not always hold true…

Dekel & Shamir (2009):
1. Train classifier on unfiltered data
2. Use learned hypothesis to “guess” the truth and use it to remove bad workers.
Learning from Imperfect data

Other source of errors:
• inaccurate labels
• redundant labels
Beyond labeling

Challenges:
• How to decompose the problem?
• How to aggregate the results?
1. Pairwise comparison & creation of a ranking.

2. (When possible) Rank all objects & compute a consensus ranking.
Clustering

Objective: minimizing disagreement.

Technique:
- HIT link or separate object & cluster are computed from these properties.
- HIT link object to predefined sets and consensus is performed.
Prediction markets

Hypothesis: Knowledge is distributed and can be accessed by aggregating the belief of many individuals.

Technique: Workers report their belief and we estimate the probability that an event happen based on mean & median.

Source: Data from 489 movies, 2000–2003 (http://www.hsx.com).
References

Human Computation
Edith Law, Luis von Ahn
Morgan & Claypool Publishers