COMP364: Biopython part II

Jérôme Waldispühl, McGill University

Protein Data Bank (PDB)

http://www.rcsb.org

Why Structures?

Facts about the PDB

What can I find in the PDB?

- Protein Structures determined by:
 - Crystallography
 - Nuclear Magnetic Resonance
 - Theoretical Models with or without partial data
- RNA & DNA structures

How are the data stored?

The structures are stored using a fixed-column format using the extension .pdb

What is a PDB id?

An entry number is assigned to each structure. Typically it is a number followed by 3 letters (E.g. 2POR).

N.B.: The same molecule can have multiple entries.

PDB growth

As of Tuesday Feb 19, 2013 at 4 PM PST there are 88325 Structures.

PDB file format

SECTION	DESCRIPTION	RECORD TYPE				
Title	Summary descriptive remarks					
Remark	Various comments about entry	REMARKs 0-999				
Annotations	in more depth than standard records					
Primary structure	Peptide and/or nucleotide sequence and the relationship between the PDB sequence and that found in the sequence database(s)	DBREF, SEQADV, SEQRES MODRES				
Heterogen	Description of non-standard groups	HET, HETNAM, HETSYN, FORMUL				
Secondary structure	Description of secondary structure	HELIX, SHEET				
Connectivity annotation	Chemical connectivity	SSBOND, LINK, CISPEP				
Miscellaneous features	Features within the macromolecule	SITE				
Crystallographic	Description of the crystallographic cell	CRYST1				
Coordinate	Coordinate transformation	ORIGXn, SCALEn, MTRIXn,				
transformation	operators					
Coordinate	Atomic coordinate data	MODEL, ATOM, ANISOU, TER, HETATM, ENDMDL				
Connectivity	Chemical connectivity	CONECT				
Bookkeeping	Summary information, end-of-file marker	MASTER, END				

Syntax of ATOM rows

COLUMNS	DATA TYPE	FIELD	DEFINITION
1 - 6	Record name	"ATOM "	3.h 3 b
7 - 11	Integer	serial	Atom serial number.
13 - 16	Atom	name	Atom name.
17	Character	altLoc	Alternate location indicator.
18 - 20	Residue name	resName	Residue name.
22	Character	chainID	Chain identifier.
23 - 26	Integer	resSeq	Residue sequence number.
27	AChar	iCode	Code for insertion of residues.
31 - 38	Real(8.3)	x	Orthogonal coordinates for X in Angstroms.
39 - 46	Real(8.3)	У	Orthogonal coordinates for Y in Angstroms.
47 - 54	Real(8.3)	Z	Orthogonal coordinates for Z in Angstroms.
55 - 60	Real(6.2)	occupancy	Occupancy.
61 - 66	Real(6.2)	tempFactor	Temperature factor.
77 - 78	LString(2)	element	Element symbol, right-justified.
79 - 80	LString(2)	charge	Charge on the atom.

- Column-fixed format
- Derived in the 70's from X-ray & NMR data format.

Syntax of ATOM rows

ATOM	1	N	MET	A	1	10.263	-7.566	-4.747	1.00	47.36	N
ATOM	2	CA	MET	A	1	9.077	-7.905	-5.617	1.00	47.69	С
ATOM	3	С	MET	A	1	9.155	-9.333	-6.212	1.00	47.89	С
ATOM	4	0	MET	Α	1	10.028	-9.649	-7.048	1.00	48.03	0
ATOM	5	СВ	MET	A	1	8.869	-6.852	-6.731	1.00	47.38	С
ATOM	6	CG	MET	A	1	7.608	-7.091	-7.622	1.00	47.57	С
ATOM	7	SD	MET	A	1	5.992	-6.631	-6.851	1.00	51.09	S
ATOM	8	CE	MET	A	1	6.098	-4.849	-6.823	1.00	46.57	С
ATOM	9	N	ASN	A	2	8.229	-10.164	-5.758	1.00	47.66	N
ATOM	10	CA	ASN	A	2	8.058	-11.566	-6.180	1.00	47.92	С
ATOM	11	С	ASN	A	2	8.046	-11.829	-7.684	1.00	48.09	С
ATOM	12	0	ASN	A	2	7.713	-10.959	-8.465	1.00	49.43	0
ATOM	13	СВ	ASN	A	2	6.732	-12.052	-5.638	1.00	48.00	С
ATOM	14	CG	ASN	A	2	6.831	-13.287	-5.003	1.00	45.23	С
ATOM	15	OD1	ASN	A	2	6.195	-14.238	-5.405	1.00	48.13	0
ATOM	16	ND2	ASN	A	2	7.617	-13.343	-3.949	1.00	42.01	N

PDB Viewers

• Pymol : http://www.pymol.org

• Jmol : http://www.jmol.org/

• Many others: KiNG, QuickPDB, Webmol, Rasmol

Pymol Jmol

Parsing PDB files with Biopython

```
from Bio.PDB.PDBParser import PDBParser
p=PDBParser(PERMISSIVE=1)
structure id="1fat"
filename="pdb1fat.ent"
s=p.get structure(structure id, filename)
 Create a new Structure Object
```

Structure representation

Working with structure objects

- Choose a model (E.g.: first model=structure[0]).
- Choose a chain (E.g.: chain A=model["A"]).
- Choose a residue (E.g.: res10=chain[10]).
- Choose a atom (E.g.: atom=res10 ["CA"]).
- Retrieve Atom attributes:

```
a.get_name()  # atom name (spaces stripped, e.g. "CA")
a.get_id()  # id (equals atom name)
a.get_coord()  # atomic coordinates
a.get_bfactor()  # B factor
a.get_occupancy()  # occupancy
a.get_altloc()  # alternative location specifie
a.get_sigatm()  # std. dev. of atomic parameters
a.get_siguij()  # std. dev. of anisotropic B factor
a.get_anisou()  # anisotropic B factor
a.get_fullname()  # atom name (with spaces, e.g. ".CA.")
```

Example

```
from Bio.PDB.PDBParser import PDBParser
parser=PDBParser()
# parse PDB file and store it in structure object
structure=parser.get structure("test", "1fat.pdb")
# print the coordinate of CA atoms with B factor > 50
for model in structure.get list():
  for chain in model.get list():
    for residue in chain.get list():
      if residue.has id("CA"):
        ca=residue["CA"]
        if ca.get bfactor()>50.0:
          print ca.get coord()
```

Appendix

- User defined color maps
- GenBank record

User defined color scale

```
from pylab import *
cdict = { 'red': ((0.0, 0.0, 0.0), 
                 (0.5, 1.0, 0.7),
                  (1.0, 1.0, 1.0)),
         'green': ((0.0, 0.0, 0.0),
                   (0.5, 1.0, 0.0),
                   (1.0, 1.0, 1.0)),
          'blue': ((0.0, 0.0, 0.0),
                   (0.5, 1.0, 0.0),
                    (1.0, 0.5, 1.0)}
my cmap = mpl.colors.LinearSegmentedColormap('my cmap',cdict,256)
pcolor(rand(10,10),cmap=my cmap)
colorbar()
```


GenBank SequenceFeatures

location: Location of the sequence.

type: This is a textual description of the type (e.g. 'CDS' or 'gene').

ref: A reference to a different sequence.

ref_db : cross sequence reference.

Strand: The strand identifier.

Qualifiers: dictionary of additional information about the features.

sub_features : additional sub_features.