Comp 251: Practice problems

Instructor: Jérome Waldispiihl

This is a collection of problems that you can use to prepare the COMP 251 final
exam. This selection of problems covers the second part of the class (i.e. after
the mid-term exam). However, the final exam will also cover the material of the
first part of the class. Please, refer to the practice problems for the mid-term, and
solution of the midterm (last lecture) to fully prepare the exam.

Dynamic programming

1. The Coin Row Problem: Suppose you have a row of coins with values that are positive integers
c1, -+, cy. These values might not be distinct. Your task is to pick up coins have as much total
value as possible, subject to the constraint that you don’t ever pick up two coins that lie beside
each other. How would you solve this using dynamic programming?

Solve the problem for coins with values ¢; to cg as follows: (5,1,2,10,6,2).

Solution: The idea for the recurrence is as follows. Start with the last coin. You either
pick it up or you don’t. If you pick it up, then you cannot pick up the second to last coin
but you are free to pick up any others. If you don’t pick up the last coin, then you are
free to pick up any of the others (subject to the problem’s constraints). The recurrence
that describes this is f(n) = max(c, + f(n — 2), f(n — 1)), with base case f(1) = ¢,
£(0) = 0.

You can solve this either iteratively or recursively using dynamic programming. For the
example given, the maximum value is 17 and uses coins {¢; = 5, ¢4 = 10, ¢ = 2}.

2. The Coin Change Problem: Suppose we have m types of coins with values ¢; < co < --- ¢y
(e.g. in the case of pennies, nickels, dimes, ... we would have ¢; = 1, ¢; = 5, c3 = 10,
-++). Let f(n) be the minimum number of coins whose values add up to exactly n. Write a
recurrence for f(n) in terms of the values of the coins. You may use as many of each type of
coin as you wish.

As an example, suppose the coin values ci, cs, and c3 are 1, 3, 4. Solve the problem for n = 6
using dynamic programming.

Solution: To write the recurrence, we consider the case that a coin of type j was used in
the optimal solution. Then, if a coin of type j was used, we need to solve the subproblem
of finding the minimum number of coins whose values sum up to n — ¢;. Thus, f(n) =
MANje(1..m} 1 + fln— Cj), f(0) =0.

For the example given, the solution is two coins of value 3 each.

3. What is the optimal substructure of the Neddleman-Wunch algorithm (i.e. optimal pairwise
sequence alignment)?

Solution: Recall the definition of the optimal substructure: “The optimal solution for one
problem instance is formed from optimal solutions for smaller problems”.

The optimal substructure is usually materialized in the dynamic programming equations.
In the Neddleman-Wunch algorithm these equations are:

NW((i—1,j5)+d(ai,—) (deletion)
NW(i,j) =maxq NW(i—1,5—1)4 6(a;,b;) (match or mismatch)
NW(i,j—1)46(—,0b)) (insertion)

Where a and b are the sequences to align, § the edit cost function, and NW (i, j) is the
dynamic programming table that stores the score of the optimal alignment of the prefix
aiy... and bl]

The last column of any alignment is either a deletion, match/mismatch or insertion. Then,
the optimal alignment of two string a;...; and b;...; is made from the concatenation of (i) an
optimal alignment of @;...;_; and b;...; if the alignment ends with a deletion, (ii) an optimal
alignment of a;..;—; and b,...;_ if the alignment ends with a match or mismatch, or (iii) an
optimal alignment of a;...; and b;...;_; if the alignment ends with a insertion. The optimal
alignment is this made from the best option among those three.

We note that the sub-problems are strictly smaller since the length of at least one of the
two sequences has been reduce by 1.

Divide-and-Conquer

4. In Karatsuba multiplication, when you do the multiplication (x1+z¢) - (y1 +o), the two values
you are multiplying might be n/2 + 1 digits each, rather than n/2 digits, since the addition
might have led to a carry e.g. 53 + 52 = 105. Does this create a problem for the argument that
the recurrence is t(n) = 3t(n/2) + ¢,?

Page 2

Solution: The recurrence would need to be written ¢(n) = 2t(n/2) + t(n/2 + 1) + ¢,.
We know that ¢(n) is O(n?) and we are trying to prove a better bound, but the fact that it
is O(n?) allows us to say that t(n) < ¢ - n? for some constant c and for sufficiently large
n (Recall the formal definition from COMP 250). Thus, t(n/2 + 1) < ¢- (n/2 +1)* =
c(n/2)?* + ¢1n/2 + c for some constant c and for sufficiently large n. Thus, t(n/2 + 1) =
t(n/2) + O(n), thatis, t(n/2 + 1) is bigger than ¢(n/2) but only by an amount that grows
linearly with n. Thus, we can write:

t(n) =2t(n/2) +t(n/2 + 1) + cn = 3t(n/2) + O(n).

In case the above went too fast, here is the basic idea: there is no problem that the Karat-
suba trick requires multiplying two numbers of size n/2 + 1 instead of n/2. The reason it
doesn’t matter is that the extra work you need to do is bounded by some O(n) term. You
are already doing a bunch of O(n) work at each node (of the call tree). So one extra O(n)
term won’t make any difference.

5. Apply the master method to determine the asymptotic behavior of the function 7'(n).

1. T(n)=2- (71/4)4—71051
2.T(n)=05-T(n/2)+1/n

3. T(n) =64-T(n/8) —n?-logn
4. T(n) = \/_ T(n/2) + logn

5. T(n)=6-T(n/3)+n* logn
6. T(n)=3-T(n/3)+n/2
Solution:

1. Case 3: T(n) = O(n"5)

2. Does not apply: a < 1

3. Does not apply: f(n) not positive
Case 1: T'(n) = O(v/n)

Case 3: T((n) = O(n? - logn)

AR A

Case 2: T'(n) = ©(n - logn)

6. Write a recurrence that describes its worst-case running time of the quicksort algorithm.

Page 3

Solution: 7'(n) =T(n—1) +T(0) + O(n)

Amortized analysis

7. Suppose we perform a sequence of stack operations on a stack whose size never exceeds k.

After every k operations, we make a copy of the entire stack for backup purposes. Show
that the cost of n stack operations, including copying the stack, is O(n) by assigning suitable
amortized costs to the various stack operations.

Solution: Charge $2 for each PUSH and POP operation and $0 for each COPY. When
we call PUSH, we use $1 to pay for the operation, and we store the other $1 on the item
pushed. When we call POP, we again use $1 to pay for the operation, and we store the
other $1 in the stack itself. Because the stack size never exceeds k, the actual cost of a
COPY operation is at most $k, which is paid by the $k found in the items in the stack
and the stack itself. Since there are k PUSH and POP operations between two consecutive
COPY operations, there are $k of credit stored, either on individual items (from PUSH
operations) or in the stack itself (from POP operations) by the time a COPY occurs. Since
the amortized cost of each operation is O(1) and the amount of credit never goes negative,
the total cost of n operations is O(n).

8. Suppose we perform a sequence of n operations on a data structure in which the i operation

costs ¢ if ¢ 1s an exact power of 2, and 1 otherwise. Use aggregate analysis or accounting
method to determine the amortized cost per operation.

Solution:
Aggregate analysis:

Let ¢; be the cost of i operation.

o ¢ ifi1is an exact power of 2
‘1 1 otherwise

n operations cost: » . ¢; < n+ Z;(fon 27 =n+ (2n — 1) < 3n. (Note: We ignoring
floor in upper bound of >~ 27).

Thus the Average cost of operation = Total cost < 3 number of operations. And by aggre-
gate analysis, the amortized cost per operation = O(1).

Accounting method:

Charge each operation $3 (amortized cost ¢;).

Page 4

e Ifiis not an exact power of 2, pay $1, and store $2 as credit.

e Ifiis an exact power of 2, pay $i, using stored credit.

Operation Cost Actual cost Credit remaining

1 3 1 2
2 3 2 3
3 3 1 5
4 3 4 4
5 3 1 6
6 3 1 8
7 3 1 10
8 3 8 5
9 3 1 7
10 3 1 9

Since the amortized cost is $3 per operation, we have » . ¢; = 3n. Moreover, from
aggregate analysis, we know that > " | ¢; < 3n. Thus)" | é > >""" | ¢; = credit never
goes negative.

Since the amortized cost of each operation is O(1), and the amount of credit never goes
negative, the total cost of n operations is O(n).

Page 5

