Elements of Greedy Algorithms

No general way to tell if a greedy algorithm is optimal, but two key ingredients are:

- **Greedy-choice Property.**
 - A globally optimal solution can be arrived at by making a locally optimal (greedy) choice.
- **Optimal Substructure.**

Recap Greedy Algorithms

- Cast the optimization problem as one in which we make a choice and are left with one subproblem to solve.
- Prove that there’s always an optimal solution that makes the greedy choice, so that the greedy choice is always safe.
- Show that greedy choice and optimal solution to subproblem ⇒ optimal solution to the problem.
- Make the greedy choice and solve top-down.
- May have to preprocess input to put it into greedy order (e.g. sorting activities by finish time).

Activity-selection Problem
For one list per vertex. Consists of an array Adj of $|V|$ lists.

- One list per vertex.
- For $u \in V$, $Adj[u]$ consists of all vertices adjacent to u.

Activity-selection Problem

<table>
<thead>
<tr>
<th>i</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>s_i</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>8</td>
</tr>
<tr>
<td>f_i</td>
<td>2</td>
<td>3</td>
<td>5</td>
<td>6</td>
<td>9</td>
<td>9</td>
<td>10</td>
</tr>
</tbody>
</table>

Activities sorted by finishing time.

Graphs

- If $(u, v) \in E$, then vertex v is adjacent to vertex u.
- Adjacency relationship is:
 - Symmetric if G is undirected.
 - Not necessarily so if G is directed.
- If G is connected:
 - There is a path between every pair of vertices.
 - $|E| \geq |V| - 1$.
 - Furthermore, if $|E| = |V| - 1$, then G is a tree.

Adjacency Lists

- Consists of an array Adj of $|V|$ lists.
- One list per vertex.
- For $u \in V$, $Adj[u]$ consists of all vertices adjacent to u.

Storage Requirement

- For directed graphs:
 - Sum of lengths of all adj. lists is
 \[\sum_{v \in V} \text{out-degree}(v) = |E| \]
 - Total storage: $\Theta(|V| \cdot |E|)$
- For undirected graphs:
 - Sum of lengths of all adj. lists is
 \[\sum_{v \in V} \text{degree}(v) = 2|E| \]
 - Total storage: $\Theta(|V| \cdot |E|)$

Representation of Graphs

- Two standard ways.
 - Adjacency Lists.
 - Adjacency Matrix.

Types of graphs

- Undirected: edge $(u, v) = (v, u)$; for all $v, (v, v) \notin E$ (No self loops.)
- Directed: (u, v) is edge from u to v, denoted as $u \rightarrow v$. Self loops are allowed.
- Weighted: each edge has an associated weight, given by a weight function $w : E \rightarrow \mathbb{R}$.
- Dense: $|E| = |V|^2$.
- Sparse: $|E| \ll |V|^2$.
- $|E| = O(|V|^2)$

Graphs

$G = (V, E)$

- V = set of vertices
- E = set of edges $\subseteq (V \times V)$

Activity-selection Problem

<table>
<thead>
<tr>
<th>i</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>s_i</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>8</td>
</tr>
<tr>
<td>f_i</td>
<td>2</td>
<td>3</td>
<td>5</td>
<td>6</td>
<td>9</td>
<td>9</td>
<td>10</td>
</tr>
</tbody>
</table>

Activities sorted by finishing time.

Graphs

- If $(u, v) \in E$, then vertex v is adjacent to vertex u.
- Adjacency relationship is:
 - Symmetric if G is undirected.
 - Not necessarily so if G is directed.
- If G is connected:
 - There is a path between every pair of vertices.
 - $|E| \geq |V| - 1$.
 - Furthermore, if $|E| = |V| - 1$, then G is a tree.

Adjacency Lists

- Consists of an array Adj of $|V|$ lists.
- One list per vertex.
- For $u \in V$, $Adj[u]$ consists of all vertices adjacent to u.

Representation of Graphs

- Two standard ways.
 - Adjacency Lists.
 - Adjacency Matrix.

Types of graphs

- Undirected: edge $(u, v) = (v, u)$; for all $v, (v, v) \notin E$ (No self loops.)
- Directed: (u, v) is edge from u to v, denoted as $u \rightarrow v$. Self loops are allowed.
- Weighted: each edge has an associated weight, given by a weight function $w : E \rightarrow \mathbb{R}$.
- Dense: $|E| = |V|^2$.
- Sparse: $|E| \ll |V|^2$.
- $|E| = O(|V|^2)$

Graphs

$G = (V, E)$

- V = set of vertices
- E = set of edges $\subseteq (V \times V)$

Adjacency Lists

- Consists of an array Adj of $|V|$ lists.
- One list per vertex.
- For $u \in V$, $Adj[u]$ consists of all vertices adjacent to u.

Storage Requirement

- For directed graphs:
 - Sum of lengths of all adj. lists is
 \[\sum_{v \in V} \text{out-degree}(v) = |E| \]
 - Total storage: $\Theta(|V| \cdot |E|)$
- For undirected graphs:
 - Sum of lengths of all adj. lists is
 \[\sum_{v \in V} \text{degree}(v) = 2|E| \]
 - Total storage: $\Theta(|V| \cdot |E|)$
Pros and Cons: adj list

Pros
- Space-efficient, when a graph is sparse.
- Can be modified to support many graph variants.

Cons
- Determining if an edge \((u, v) \) \(\in G \) is not efficient.
 - Have to search in \(u \)'s adjacency list. \(\Theta(\text{degree}(u)) \) time.
 - \(\Theta(V) \) in the worst case.

Adjacency Matrix

- \(|V| \times |V| \) matrix \(A \).
- Number vertices from 1 to \(|V| \) in some arbitrary manner.
- \(A \) is then given by:
 \[
 A[i,j] = \begin{cases}
 1 & \text{if} \ (i,j) \in E \\
 0 & \text{otherwise}
 \end{cases}
 \]

Space and Time

Space: \(\Theta(V^2) \).
- Not memory efficient for large sparse graphs.
Time: to list all vertices adjacent to \(u \): \(\Theta(V) \).
Time: to determine if \((u, v) \in E \): \(\Theta(1) \).
Can store weights instead of bits for weighted graph.

Graph-searching Algorithms (COMP250)

- Searching a graph:
 - Systematically follow the edges of a graph
 to visit the vertices of the graph.
- Used to discover the structure of a graph.
- Standard graph-searching algorithms.
 - Breadth-first Search (BFS).
 - Depth-first Search (DFS).

Breadth-first Search

- Expands the frontier between discovered and undiscovered vertices uniformly across the breadth of the frontier.
- A vertex is “discovered” the first time it is encountered during the search.
- A vertex is “finished” if all vertices adjacent to it have been discovered.
- Colors the vertices to keep track of progress.
 - White – Undiscovered.
 - Gray – Discovered but not finished.
 - Black – Finished.
- Colors are required only to reason about the algorithm. Can be implemented without colors.
Example (BFS)

Example (BFS)

Example (BFS)

Example (BFS)

Analysis of BFS

- Initialization takes $O(V)$.
- Traversal Loop
 - After initialization, each vertex is enqueued and dequeued at most once, and each operation takes $O(1)$. So, total time for queuing is $O(V)$.
 - The adjacency list of each vertex is scanned at most once. The sum of lengths of all adjacency lists is $\Theta(E)$.
- Summing up over all vertices \Rightarrow total running time of BFS is $O(V+E)$, linear in the size of the adjacency list representation of graph.

Depth-first Search (DFS)

- Explore edges out of the most recently discovered vertex v.
- When all edges of v have been explored, backtrack to explore other edges leaving the vertex from which v was discovered (its predecessor).
- "Search as deep as possible first."
- Continue until all vertices reachable from the original source are discovered.
- If any undiscovered vertices remain, then one of them is chosen as a new source and search is repeated from that source.
Depth-first Search

- **Input:** $G = (V, E)$, directed or undirected. No source vertex given!
- **Output:**
 - 2 timestamps on each vertex. Integers between 1 and $2|V|$.
 - $d[v]$ = discovery time (v turns from white to gray)
 - $f[v]$ = finishing time (v turns from gray to black)
 - $\pi[v]$: predecessor of $v = u$, such that v was discovered during the scan of u’s adjacency list.
- Uses the same coloring scheme for vertices as BFS.

Pseudo-code

DFS

1. for each vertex $u \in V(G)$
2. do $\text{color}[u] \leftarrow \text{WHITE}$
3. $\pi[u] \leftarrow \text{NIL}$
4. $\text{time} \leftarrow 0$
5. for each vertex $u \in V(G)$
6. do if $\text{color}[u] = \text{WHITE}$
7. then $\text{DFS-Visit}(u)$

DFS-Visit(u)

1. $\text{color}[u] \leftarrow \text{GRAY}$
2. $\text{time} \leftarrow \text{time} + 1$
3. $\text{d}[u] \leftarrow \text{time}$
4. for each $v \in \text{Adj}[u]$
5. do if $\text{color}[v] = \text{WHITE}$
6. then $\text{color}[v] \leftarrow \text{gray}$
7. $\text{DFS-Visit}(v)$
8. $\text{color}[u] \leftarrow \text{BLACK}$
9. $\text{f}[u] \leftarrow \text{time} \leftarrow \text{time} + 1$

Example (DFS)

- Diagram of a graph and its DFS traversal, showing discovery and finishing times, and predecessor relationships.

- Diagram of another graph and its DFS traversal, illustrating the same process.

- Diagram of a third graph and its DFS traversal, highlighting the same features.
Analysis of DFS

- Loops on lines 1-2 & 5-7 take $\Theta(V)$ time, excluding time to execute DFS-Visit.
- DFS-Visit is called once for each white vertex $v \in V$ when it’s painted gray the first time. Lines 3-6 of DFS-Visit is executed $|\text{Adj}[v]|$ times. The total cost of executing DFS-Visit is $\sum_{v \in V} |\text{Adj}[v]| = \Theta(E)$.
- Total running time of DFS is $\Theta(V+E)$.

Example (DFS)

Parenthesis Theorem

Theorem 1:
For all u, v, exactly one of the following holds:
1. $d(u) < f[u] < d(v) < f[v]$ or $d(v) < f[v] < d(u) < f[u]$ and neither u nor v is a descendant of the other.
2. $d(u) < d(v) < f[v] < f[u]$ and v is a descendant of u.
3. $d(v) < d(u) < f[u] < f[v]$ and u is a descendant of v.

- So $d(u) < d(v) < f[u] < f[v]$ cannot happen.
- Like parentheses:
 - OK: $(())()()$
 - Not OK: $(()()())$

Corollary
v is a proper descendant of u if and only if $d(u) < d(v) < f[v] < f[u]$.

Example (Parenthesis Theorem)

White-path Theorem

Theorem 2
v is a descendant of u if and only if at time $d[u]$, there is a path $u \rightsquigarrow v$ consisting of only white vertices. (Except for u, which was just colored gray.)

Example (DFS)

$\text{v, y, and } x \text{ are descendants of } u$.
Classification of Edges

- **Tree edge**: in the depth-first forest. Found by exploring \((u, v)\).
- **Back edge**: \((u, v)\), where \(u\) is a descendant of \(v\) (in the depth-first tree).
- **Forward edge**: \((u, v)\), where \(v\) is a descendant of \(u\), but not a tree edge.
- **Cross edge**: any other edge. Can go between vertices in same depth-first tree or in different depth-first trees.

Theorem 3
In DFS of an undirected graph, we get only tree and back edges. No forward or cross edges.

Identification of Edges

- Edge type for edge \((u, v)\) can be identified when it is first explored by DFS.
- Identification is based on the color of \(v\).
 - White – tree edge.
 - Gray – back edge.
 - Black – forward or cross edge.

Directed Acyclic Graph

- **DAG** – Directed graph with no cycles.
- Good for modeling processes and structures that have a **partial order**:
 - \(a > b\) and \(b > c\) \(\Rightarrow\) \(a > c\).
 - But may have \(a\) and \(b\) such that neither \(a > b\) nor \(b > a\).
- Can always make a **total order** (either \(a > b\) or \(b > a\) for all \(a \neq b\)) from a partial order.

Characterizing a DAG

Lemma 1
A directed graph \(G\) is acyclic iff a DFS of \(G\) yields no back edges.

Proof:
- \(\Rightarrow\): Show that back edge \(\Rightarrow\) cycle.
 - Suppose there is a back edge \((u, v)\). Then \(v\) is ancestor of \(u\) in depth-first forest.
 - Therefore, there is a path \(v \sim u\), so \(v \sim u \sim v\) is a cycle.
Characterizing a DAG

Lemma 2
A directed graph G is acyclic iff a DFS of G yields no back edges.

Proof (Contd.):
- \Leftarrow: Show that a cycle implies a back edge.
 - At time $d[v]$, vertices of c form a white path v to u.
 - By white-path theorem, u is a descendant of v in depth-first forest.
 - Therefore, (u, v) is a back edge.

Topological Sort

Want to "sort" a directed acyclic graph (DAG).

Think of original DAG as a **partial order**.

Want a **total order** that extends this partial order.

Topological Sort

- Performed on a DAG.
- Linear ordering of the vertices of G such that if $(u, v) \in E$, then u appears somewhere before v.

Topological-Sort (G)
1. call DFS(G) to compute finishing times $f[v]$ for all $v \in V$
2. as each vertex is finished, insert it onto the front of a linked list
3. return the linked list of vertices

Time: $\Theta(V + E)$.

Example 1

Linked List:

A B C D E
Example 1

Linked List:

A
B
D
C
E
1/4
2/3
E
2/3
1/4
D
5/8
6/7
6/7
C
5/8
B
9/10
A

Example 2

socks
shorts
hose
pants
skates
leg pads
T-shirt
chest pad
sweater
mask
catch glove
blocker
bawng
glove
26
24
23
22
21
14
13
12
11
6
5
4
3
2
1

Correctness Proof

• Just need to show if $(u, v) \in E$, then $f(v) < f(u)$.
• When we explore (u, v), what are the colors of u and v?
 – u is gray.
 – Is v gray, too?
 • No, because then v would be an ancestor of u.
 • \Rightarrow contradiction of Lemma 2 (DAG has no back edges).
 – Is v white?
 • Then becomes descendant of u.
 – Is v black?
 • Then v is already finished.
 • Since we’re exploring (u, v), we have not yet finished u.
 • Therefore, $f(v) < f(u)$.

Strongly Connected Components

• G is strongly connected if every pair (u, v) of vertices in G is reachable from one another.
• A strongly connected component (SCC) of G is a maximal set of vertices $C \subseteq V$ such that for all $u, v \in C$, both $u \leadsto v$ and $v \leadsto u$ exist.

Component Graph

• $G^{SCC} = (V^{SCC}, E^{SCC})$.
• V^{SCC} has one vertex for each SCC in G.
• E^{SCC} has an edge if there’s an edge between the corresponding SCC’s in G.
• G^{SCC} for the example considered:

G^{SCC} is a DAG

Lemma 2
Let C and C' be distinct SCC’s in G, let $u, v \in C$, $u', v' \in C'$, and suppose there is a path $u \leadsto v$ in G. Then there cannot also be a path $v' \leadsto u'$ in G.

Proof:
• Suppose there is a path $v' \leadsto u'$ in G.
• Then there are paths $u \leadsto u' \leadsto v'$ and $v \leadsto v' \leadsto u$ in G.
• Therefore, u and v' are reachable from each other, so they are not in separate SCC’s.
Transpose of a Directed Graph

- $G^T = \text{transpose of directed } G$.
 - $G^T = (V, E'), E' = \{(u, v) : (v, u) \in E\}$.
 - G^T is G with all edges reversed.
- Can create G^T in $\Theta(V + E)$ time if using adjacency lists.
- G and G^T have the same SCC’s. (u and v are reachable from each other in G if and only if reachable from each other in G^T.)

Algorithm to determine SCCs

1. call DFS(G) to compute finishing times $f[u]$ for all u
2. compute G^T
3. call DFS(G^T), but in the main loop, consider vertices in order of decreasing $f[u]$ (as computed in first DFS)
4. output the vertices in each tree of the depth-first forest formed in second DFS as a separate SCC

Time: $\Theta(V + E)$.

Example

G

Example

G^T

Example

G

Example

G^T
Proof:

- **Case 1:** $d(C) < d(C')$
 - Let u be the first vertex discovered in C.
 - At time $d(u)$, all vertices in C and C' are white. Thus, there exist paths of white vertices from u to all vertices in C and C'.
 - By the white-path theorem, all vertices in C and C' are descendants of u in depth-first tree.
 - By the parent-theorem, $f[u] = \hat{f}(C) > \hat{f}(C')$.

- **Case 2:** $d(C) > d(C')$
 - Let u be the first vertex discovered in C.
 - At time $d(u)$, all vertices in C and C' are white. Thus, there exist white paths from u to each vertex in C.
 - All vertices in C become descendants of u. Again, $f[u] = \hat{f}(C)$.
 - By earlier lemma, since there is an edge (u, v), we cannot have a path from C' to C.
 - So no vertex in C is reachable from v.
 - Therefore, at time $f[y]$, all vertices in C are still white.
 - Therefore, for all $w \in C, f[w] > f[y]$, which implies that $f(C') > f(C)$.

Corollary 1

Let C and C' be distinct SCCs in $G = (V, E)$. Suppose there is an edge $(u, v) \in E$ such that $u \in C$ and $v \in C'$. Then $f(C') > f(C)$.

Proof:

- $(u, v) \in E' \Rightarrow (v, u) \in E$.
- Since SCCs of G and G' are the same, $f(C') > f(C)$, by Lemma.
Correctness of SCC

- The next root chosen in the second DFS is in SCC C' such that $f(C')$ is maximum over all SCC's other than C.
 - DFS visits all vertices in C', but the only edges out of C' go to C, which we've already visited.
 - Therefore, the only tree edges will be to vertices in C.
- We can continue the process.
- Each time we choose a root for the second DFS, it can reach only
 - vertices in its SCC—get tree edges to these,
 - vertices in SCC's already visited in second DFS—get no tree edges to these.