COMP251: Elementary graph algorithms

Jérôme Waldispühl
School of Computer Science
McGill University

Based on (Cormen et al., 2002)

Based on slides from D. Plaisted (UNC)
Recap Greedy Algorithms

• Cast the optimization problem as one in which we make a choice and are left with one subproblem to solve.

• Prove that there’s always an optimal solution that makes the greedy choice, so that the greedy choice is always safe.

• Show that greedy choice and optimal solution to subproblem ⇒ optimal solution to the problem.

• Make the greedy choice and solve top-down.

• May have to preprocess input to put it into greedy order (e.g. sorting activities by finish time).
Elements of Greedy Algorithms

No general way to tell if a greedy algorithm is optimal, but two key ingredients are:

• Greedy-choice Property.
 – A globally optimal solution can be arrived at by making a locally optimal (greedy) choice.

• Optimal Substructure.
Activity-selection Problem

<table>
<thead>
<tr>
<th>i</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>s_i</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>8</td>
</tr>
<tr>
<td>f_i</td>
<td>2</td>
<td>3</td>
<td>5</td>
<td>6</td>
<td>9</td>
<td>9</td>
<td>10</td>
</tr>
</tbody>
</table>

Activities sorted by finishing time.
Activity-selection Problem

<table>
<thead>
<tr>
<th>i</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>(s_i)</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>8</td>
</tr>
<tr>
<td>(f_i)</td>
<td>2</td>
<td>3</td>
<td>5</td>
<td>6</td>
<td>9</td>
<td>9</td>
<td>10</td>
</tr>
</tbody>
</table>

Activities sorted by finishing time.
Activity-selection Problem

<table>
<thead>
<tr>
<th>i</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>s_i</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>8</td>
</tr>
<tr>
<td>f_i</td>
<td>2</td>
<td>3</td>
<td>5</td>
<td>6</td>
<td>9</td>
<td>9</td>
<td>10</td>
</tr>
</tbody>
</table>

Activities sorted by finishing time.
Activity-selection Problem

<table>
<thead>
<tr>
<th>i</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>s_i</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>8</td>
</tr>
<tr>
<td>f_i</td>
<td>2</td>
<td>3</td>
<td>5</td>
<td>6</td>
<td>9</td>
<td>9</td>
<td>10</td>
</tr>
</tbody>
</table>

Activities sorted by finishing time.
Graphs

• **Graph** $G = (V, E)$
 – V = set of vertices
 – E = set of edges $\subseteq (V \times V)$

• **Types of graphs**
 – Undirected: edge $(u, v) = (v, u)$; for all v, $(v, v) \notin E$ (No self loops.)
 – Directed: (u, v) is edge from u to v, denoted as $u \rightarrow v$. Self loops are allowed.
 – Weighted: each edge has an associated weight, given by a weight function $w : E \rightarrow \mathbb{R}$.
 – Dense: $|E| \approx |V|^2$.
 – Sparse: $|E| \ll |V|^2$.

• $|E| = O(|V|^2)$
• If \((u, v) \in E\), then vertex \(v\) is adjacent to vertex \(u\).

• Adjacency relationship is:
 – Symmetric if \(G\) is undirected.
 – Not necessarily so if \(G\) is directed.

• If \(G\) is connected:
 – There is a path between every pair of vertices.
 – \(|E| \geq |V| - 1\).
 – Furthermore, if \(|E| = |V| - 1\), then \(G\) is a tree.
Representation of Graphs

• Two standard ways.
 – Adjacency Lists.
 – Adjacency Matrix.
Adjacency Lists

- Consists of an array Adj of $|V|$ lists.
- One list per vertex.
- For $u \in V$, $\text{Adj}[u]$ consists of all vertices adjacent to u.

Note: If weighted, store weights also in adjacency lists.
Storage Requirement

• For directed graphs:
 – Sum of lengths of all adj. lists is
 \[\sum_{v \in V} \text{out-degree}(v) = |E| \]
 – Total storage: \(\Theta(V+E) \)

• For undirected graphs:
 – Sum of lengths of all adj. lists is
 \[\sum_{v \in V} \text{degree}(v) = 2|E| \]
 – Total storage: \(\Theta(V+E) \)
Pros and Cons: adj list

• Pros
 – Space-efficient, when a graph is sparse.
 – Can be modified to support many graph variants.

• Cons
 – Determining if an edge \((u,v) \in G\) is not efficient.
 • Have to search in \(u\)’s adjacency list. \(\Theta(\text{degree}(u))\) time.
 • \(\Theta(V)\) in the worst case.
Adjacency Matrix

- $|V| \times |V|$ matrix A.
- Number vertices from 1 to $|V|$ in some arbitrary manner.
- A is then given by:

$$A[i, j] = a_{ij} = \begin{cases}
1 & \text{if } (i, j) \in E \\
0 & \text{otherwise}
\end{cases}$$

$$
\begin{array}{cccc}
1 & 2 & 3 & 4 \\
1 & 0 & 1 & 1 & 1 \\
2 & 0 & 0 & 1 & 0 \\
3 & 0 & 0 & 0 & 1 \\
4 & 0 & 0 & 0 & 0 \\
\end{array}
$$

$A = A^T$ for undirected graphs.
Space and Time

• **Space:** $\Theta(V^2)$.

 – Not memory efficient for large sparse graphs.

• **Time:** to list all vertices adjacent to u: $\Theta(V)$.

• **Time:** to determine if $(u, v) \in E$: $\Theta(1)$.

• Can store weights instead of bits for weighted graph.

\[
\begin{array}{ccccccc}
& a & b & c & d & e & f \\
\hline
a & 0 & 5 & 0 & 11 & 0 & 0 \\
b & 0 & 0 & 7 & 0 & 3 & 0 \\
c & 0 & 0 & 0 & 0 & 0 & 3 \\
d & 0 & 0 & 0 & 0 & 1 & 0 \\
e & 0 & 0 & 1 & 0 & 0 & 2 \\
f & 0 & 0 & 0 & 0 & 0 & 0 \\
\end{array}
\]
Graph-searching Algorithms (COMP250)

• Searching a graph:
 – Systematically follow the edges of a graph to visit the vertices of the graph.

• Used to discover the structure of a graph.

• Standard graph-searching algorithms.
 – Breadth-first Search (BFS).
 – Depth-first Search (DFS).
Breadth-first Search

• Expands the frontier between discovered and undiscovered vertices uniformly across the breadth of the frontier.
 – A vertex is “discovered” the first time it is encountered during the search.
 – A vertex is “finished” if all vertices adjacent to it have been discovered.

• Colors the vertices to keep track of progress.
 – White – Undiscovered.
 – Gray – Discovered but not finished.
 – Black – Finished.
 • Colors are required only to reason about the algorithm. Can be implemented without colors.
Breadth-first Search

• **Input:** Graph $G = (V, E)$, either directed or undirected, and *source vertex* $s \in V$.

• **Output:**
 - $d[v] = \text{distance (smallest # of edges, or shortest path) from } s \text{ to } v$, for all $v \in V$. $d[v] = \infty$ if v is not reachable from s.
 - $\pi[v] = u$ such that (u, v) is last edge on shortest path $s \sim \sim v$.
 - u is v’s predecessor.
 - Builds breadth-first tree with root s that contains all reachable vertices.
Example (BFS)

Q:

\begin{array}{c}
\text{s} \\
0
\end{array}
Example (BFS)

Q: w r
 1 1
Example (BFS)

Q: \[r \quad t \quad x \quad 1 \quad 2 \quad 2 \]
Example (BFS)

Q: t x v
 2 2 2
Example (BFS)

Q: x v u
 2 2 3
Example (BFS)

Q: v u y
 2 3 3
Example (BFS)

Q: u y
 3 3
Example (BFS)
Example (BFS)

Q: ∅
Example (BFS)

BF Tree
Analysis of BFS

• Initialization takes $O(V)$.
• Traversal Loop
 – After initialization, each vertex is enqueued and dequeued at most once, and each operation takes $O(1)$. So, total time for queuing is $O(V)$.
 – The adjacency list of each vertex is scanned at most once. The sum of lengths of all adjacency lists is $\Theta(E)$.
• Summing up over all vertices => total running time of BFS is $O(V+E)$, linear in the size of the adjacency list representation of graph.
Depth-first Search (DFS)

• Explore edges out of the most recently discovered vertex v.
• When all edges of v have been explored, backtrack to explore other edges leaving the vertex from which v was discovered (its predecessor).
• “Search as deep as possible first.”
• Continue until all vertices reachable from the original source are discovered.
• If any undiscovered vertices remain, then one of them is chosen as a new source and search is repeated from that source.
• **Input:** \(G = (V, E) \), directed or undirected. No source vertex given.

• **Output:**
 - 2 timestamps on each vertex. Integers between 1 and 2\(|V|\).
 - \(d[v] = \text{discovery time} \) (\(v \) turns from white to gray)
 - \(f[v] = \text{finishing time} \) (\(v \) turns from gray to black)
 - \(\pi[v] \): predecessor of \(v = u \), such that \(v \) was discovered during the scan of \(u \)'s adjacency list.

• Uses the same coloring scheme for vertices as BFS.
Pseudo-code

DFS(G)
1. for each vertex $u \in V[G]$
2. do $color[u] \leftarrow \text{white}$
3. $\pi[u] \leftarrow \text{NIL}$
4. $time \leftarrow 0$
5. for each vertex $u \in V[G]$
6. do if $color[u] = \text{white}$
7. then DFS-Visit(u)

DFS-Visit(u)
1. $color[u] \leftarrow \text{GRAY} \quad \nabla \text{White vertex } u \text{ has been discovered}$
2. $time \leftarrow time + 1$
3. $d[u] \leftarrow time$
4. for each $v \in Adj[u]$
5. do if $color[v] = \text{WHITE}$
6. then $\pi[v] \leftarrow u$
7. DFS-Visit(v)
8. $color[u] \leftarrow \text{BLACK} \quad \nabla \text{Blacken } u; \text{ it is finished.}$
9. $f[u] \leftarrow time \leftarrow time + 1$

Uses a global timestamp $time$.
Example (DFS)
Example (DFS)
Example (DFS)
Example (DFS)
Example (DFS)
Example (DFS)

Starting time $d(x)$

Finishing time $f(x)$
Example (DFS)

![Graph diagram showing a DFS traversal with nodes labeled 1/8, 2/7, 4/5, 3/6, 9/, 10/11, and edges labeled F, B, C.]
Example (DFS)
Analysis of DFS

• Loops on lines 1-2 & 5-7 take $\Theta(V)$ time, excluding time to execute DFS-Visit.

• DFS-Visit is called once for each white vertex $v \in V$ when it’s painted gray the first time. Lines 3-6 of DFS-Visit is executed $|\text{Adj}[v]|$ times. The total cost of executing DFS-Visit is $\sum_{v \in V} |\text{Adj}[v]| = \Theta(E)$

• Total running time of DFS is $\Theta(V+E)$.
Example (DFS)

Starting time \(d(x) \)
Finishing time \(f(x) \)
Parenthesis Theorem

Theorem 1:
For all u, v, exactly one of the following holds:

2. $d[u] < d[v] < f[v] < f[u]$ and v is a descendant of u.

- Like parentheses:
 - OK: () [] ([]) ([])
 - Not OK: ([]) [()]

Corollary

v is a proper descendant of u if and only if $d[u] < d[v] < f[v] < f[u]$.
Example (Parenthesis Theorem)

(s (z (y (x x) y) (w w) z) s) (t (v v) (u u) t)
White-path Theorem

Theorem 2

ν is a descendant of u if and only if at time $d[u]$, there is a path $u \rightsquigarrow \nu$ consisting of only white vertices. (Except for u, which was just colored gray.)
Example (DFS)

v, y, and x are descendants of u.
Classification of Edges

- **Tree edge**: in the depth-first forest. Found by exploring (u, v).
- **Back edge**: (u, v), where u is a descendant of v (in the depth-first tree).
- **Forward edge**: (u, v), where v is a descendant of u, but not a tree edge.
- **Cross edge**: any other edge. Can go between vertices in same depth-first tree or in different depth-first trees.

Theorem 3
In DFS of an undirected graph, we get only tree and back edges. No forward or cross edges.
Example (DFS)

- Forward edge
- Back edge
- Tree edge
- Cross edge
Identification of Edges

• Edge type for edge \((u, v)\) can be identified when it is first explored by DFS.
• Identification is based on the color of \(v\).
 – White – tree edge.
 – Gray – back edge.
 – Black – forward or cross edge.
Directed Acyclic Graph

- DAG – Directed graph with no cycles.
- Good for modeling processes and structures that have a **partial order**:
 - \(a > b \) and \(b > c \) \(\Rightarrow a > c \).
 - But may have \(a \) and \(b \) such that neither \(a > b \) nor \(b > a \).
- Can always make a **total order** (either \(a > b \) or \(b > a \) for all \(a \neq b \)) from a partial order.
Example

DAG of dependencies for putting on goalie equipment.
Characterizing a DAG

Lemma 1
A directed graph G is acyclic iff a DFS of G yields no back edges.

Proof:

• \Rightarrow: Show that back edge \Rightarrow cycle.
 – Suppose there is a back edge (u, v). Then v is ancestor of u in depth-first forest.
 – Therefore, there is a path $v \leadsto u$, so $v \leadsto u \leadsto v$ is a cycle.

\[
\begin{array}{c}
v \quad T \quad T \quad T \quad u \\
\end{array}
\]
Lemma 1
A directed graph G is acyclic iff a DFS of G yields no back edges.

Proof (Contd.):

- \Leftarrow: Show that a cycle implies a back edge.
 - At time $d[v]$, vertices of c form a white path $v \rightsquigarrow u$.
 - By white-path theorem, u is a descendent of v in depth-first forest.
 - Therefore, (u, v) is a back edge.
Topological Sort

Want to “sort” a directed acyclic graph (DAG).

Think of original DAG as a partial order.

Want a total order that extends this partial order.
Topological Sort

• Performed on a DAG.
• Linear ordering of the vertices of G such that if $(u, v) \in E$, then u appears somewhere before v.

Topological-Sort (G)
1. call DFS(G) to compute finishing times $f[v]$ for all $v \in V$
2. as each vertex is finished, insert it onto the front of a linked list
3. return the linked list of vertices

Time: $\Theta(V + E)$.
Example 1

Linked List:
Example 1

Linked List:
Example 1

Linked List:
Example 1

Linked List:

A -> B -> C

D -> 1/4

E -> 2/3

Linked List:

1/4 -> 2/3

D -> E
Example 1

Linked List:
Example 1

Linked List:

A → B → C → D → E
Example 1

Linked List:

A → B → D
C → 5/6
D → 1/4
E → 2/3

Linked List:

A → B → D → E
C → 6/7 → 1/4 → 2/3
Example 1

Linked List:
Example 1

Linked List:

B → C → D → E
Example 1

Linked List:

A -> 9/10 -> B -> 5/8 -> C -> 6/7 -> D -> 1/4 -> E -> 2/3
Example 2

26 socks
24 shorts
23 hose
22 pants
21 skates
20 leg pads
14 t-shirt
13 chest pad
12 sweater
11 mask
6 batting glove
5 catch glove
4 blocker
Correctness Proof

• Just need to show if \((u, v) \in E\), then \(f[v] < f[u]\).
• When we explore \((u, v)\), what are the colors of \(u\) and \(v\)?
 – \(u\) is gray.
 – Is \(v\) gray, too?
 • \textit{No}, because then \(v\) would be ancestor of \(u\).
 • \(\Rightarrow (u, v)\) is a back edge.
 • \(\Rightarrow\) contradiction of \textbf{Lemma 1} (DAG has no back edges).
 – Is \(v\) white?
 • Then becomes descendant of \(u\).
 • By parenthesis theorem, \(d[u] < d[v] < f[v] < f[u]\).
 – Is \(v\) black?
 • Then \(v\) is already finished.
 • Since we’re exploring \((u, v)\), we have not yet finished \(u\).
 • Therefore, \(f[v] < f[u]\).
Strongly Connected Components

- G is strongly connected if every pair (u, v) of vertices in G is reachable from one another.
- A strongly connected component (SCC) of G is a maximal set of vertices $C \subseteq V$ such that for all $u, v \in C$, both $u \sim v$ and $v \sim u$ exist.
Component Graph

- $G^{SCC} = (V^{SCC}, E^{SCC})$.
- V^{SCC} has one vertex for each SCC in G.
- E^{SCC} has an edge if there’s an edge between the corresponding SCC’s in G.
- G^{SCC} for the example considered:
G^{SCC} is a DAG

Lemma 2
Let C and C' be distinct SCC's in G, let $u, v \in C, u', v' \in C'$, and suppose there is a path $u \sim u'$ in G. Then there cannot also be a path $v' \sim v$ in G.

Proof:
• Suppose there is a path $v' \sim v$ in G.
• Then there are paths $u \sim u' \sim v'$ and $v' \sim v \sim u$ in G.
• Therefore, u and v' are reachable from each other, so they are not in separate SCC's.
Transpose of a Directed Graph

- $G^T = \text{transpose}$ of directed G.
 - $G^T = (V, E^T), E^T = \{(u, v) : (v, u) \in E\}$.
 - G^T is G with all edges reversed.

- Can create G^T in $\Theta(V + E)$ time if using adjacency lists.

- G and G^T have the same SCC’s. (u and v are reachable from each other in G if and only if reachable from each other in G^T.)
Algorithm to determine SCCs

SCC(G)
1. call DFS(G) to compute finishing times $f[u]$ for all u
2. compute G^T
3. call DFS(G^T), but in the main loop, consider vertices in order of decreasing $f[u]$ (as computed in first DFS)
4. output the vertices in each tree of the depth-first forest formed in second DFS as a separate SCC

Time: $\Theta(V + E)$.
Example

G
Example

\[G \]

- \(a \) connected to \(b \) and \(c \)
- \(b \) connected to \(c \)
- \(c \) connected to \(d \)
- \(d \) connected to \(g \)
- \(e \) connected to \(f \)
- \(f \) connected to \(g \)
- \(g \) connected to \(h \)

Nodes: 13/14, 12/15, 11/16, 1/10, 8/9, 3/4, 2/7, 5/6, e, f, g, h
Example

G

a

13/14

b

11/16

12/15
e

c

1/10

d

8/9

3/4

2/7

g

5/6

h
G^T

Example

(b (a (e e) a) b) (c (d d) c) (g (f f) g) (h)
Example

- abe
- cd
- fg
- h
How does it work?

• **Idea:**
 – By considering vertices in second DFS in decreasing order of finishing times from first DFS, we are visiting vertices of the component graph in topologically sorted order.
 – Because we are running DFS on G^T, we will not be visiting any v from a u, where v and u are in different components.

• **Notation:**
 – $d[u]$ and $f[u]$ always refer to first DFS.
 – Extend notation for d and f to sets of vertices $U \subseteq V$:
 – $d(U) = \min_{u \in U} \{d[u]\}$ (earliest discovery time)
 – $f(U) = \max_{u \in U} \{f[u]\}$ (latest finishing time)
SCCs and DFS finishing times

Lemma 3
Let C and C' be distinct SCC's in $G = (V, E)$. Suppose there is an edge $(u, v) \in E$ such that $u \in C$ and $v \in C'$. Then $f(C) > f(C')$.

Proof:
- **Case 1: $d(C) < d(C')$**
 - Let x be the first vertex discovered in C.
 - At time $d[x]$, all vertices in C and C' are white. Thus, there exist paths of white vertices from x to all vertices in C and C'.
 - By the white-path theorem, all vertices in C and C' are descendants of x in depth-first tree.
 - By the parenthesis theorem, $f[x] = f(C) > f(C')$.

![Diagram](image)

[Image of SCCs and DFS finishing times]
SCCs and DFS finishing times

Lemma 4
Let C and C' be distinct SCC's in $G = (V, E)$. Suppose there is an edge $(u, v) \in E$ such that $u \in C$ and $v \in C'$. Then $f(C) > f(C')$.

Proof:
• Case 2: $d(C) > d(C')$
 – Let y be the first vertex discovered in C'.
 – At time $d[y]$, all vertices in C' are white and there is a white path from y to each vertex in $C' \Rightarrow$ all vertices in C' become descendants of y. Again, $f[y] = f(C')$.
 – At time $d[y]$, all vertices in C are also white.
 – By earlier lemma, since there is an edge (u, v), we cannot have a path from C' to C.
 – So no vertex in C is reachable from y.
 – Therefore, at time $f[y]$, all vertices in C are still white.
 – Therefore, for all $w \in C, f[w] > f[y]$, which implies that $f(C) > f(C')$.

![Diagram](image)
SCCs and DFS finishing times

Corollary 1
Let C and C' be distinct SCC's in $G = (V, E)$. Suppose there is an edge $(u, v) \in E^T$, where $u \in C$ and $v \in C'$. Then $f(C) < f(C')$.

Proof:

- $(u, v) \in E^T \Rightarrow (v, u) \in E$.
- Since SCC's of G and G^T are the same, $f(C') > f(C)$, by Lemma.
Correctness of SCC

• When we do the second DFS, on G^T, start with SCC C such that $f(C)$ is maximum.
 – The second DFS starts from some $x \in C$, and it visits all vertices in C.
 – Corollary 22.15 says that since $f(C) > f(C')$ for all $C \neq C'$, there are no edges from C to C' in G^T.
 – Therefore, DFS will visit only vertices in C.
 – Which means that the depth-first tree rooted at x contains exactly the vertices of C.
Correctness of SCC

• The next root chosen in the second DFS is in SCC C' such that $f(C')$ is maximum over all SCC’s other than C.
 – DFS visits all vertices in C', but the only edges out of C' go to C, which we’ve already visited.
 – Therefore, the only tree edges will be to vertices in C'.
• We can continue the process.
• Each time we choose a root for the second DFS, it can reach only
 – vertices in its SCC—get tree edges to these,
 – vertices in SCC’s already visited in second DFS—get no tree edges to these.