COMP251: Greedy algorithms

Jérôme Waldispühl
School of Computer Science
McGill University

Based on (Cormen et al., 2002)

Based on slides from D. Plaisted (UNC) & (goodrich & Tamassia, 2009)
Disjoint sets are represented with an array rep[], that stores the representative rep[i] of each element i. The running time of the function find(i) that returns the representative of the set containing i is:

- $\Omega(1)$ ✓ (More interestingly $\Theta(1)$)
- $O(\log n)$
- $\Theta(\log n)$
Let $h(A)$ (resp. $h(B)$) be the height of the tree A (resp. B) rooted at x (resp. y). We assume that $h(B) \leq h(A) + 1$. After union(x, y), which assertion are true?

- $h(y) = h(A) + 1$ ✓
- $h(y) = \max(h(A)+1, h(B))$ ✓
- $h(y) = h(B)$ ✗
- $h(B) < h(y)$ ✗

<table>
<thead>
<tr>
<th>Assertion</th>
<th>Count</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>$h(y) = h(A) + 1$</td>
<td>9</td>
<td>34.6%</td>
</tr>
<tr>
<td>$h(y) = \max(h(A)+1, h(B))$</td>
<td>16</td>
<td>61.5%</td>
</tr>
<tr>
<td>$h(y) = h(B)$</td>
<td>2</td>
<td>7.7%</td>
</tr>
<tr>
<td>$h(B) < h(y)$</td>
<td>10</td>
<td>38.5%</td>
</tr>
</tbody>
</table>
Overview

• Algorithm design technique to solve optimization problems.
• Problems exhibit optimal substructure.
• Idea (the greedy choice):
 – When we have a choice to make, make the one that looks best right now.
 – Make a locally optimal choice in hope of getting a globally optimal solution.
Greedy Strategy

The choice that seems best at the moment is the one we go with.

– Prove that when there is a choice to make, one of the optimal choices is the greedy choice. Therefore, it is always safe to make the greedy choice.
– Show that all but one of the sub-problems resulting from the greedy choice are empty.
Activity-selection Problem

- **Input**: Set S of n activities, a_1, a_2, \ldots, a_n.
 - $s_i =$ start time of activity i.
 - $f_i =$ finish time of activity i.

- **Output**: Subset A of maximum number of compatible activities.
 - 2 activities are compatible, if their intervals do not overlap.

Example:

Activities in each line are compatible.
Activity-selection Problem

<table>
<thead>
<tr>
<th>i</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>s_i</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>8</td>
</tr>
<tr>
<td>f_i</td>
<td>2</td>
<td>3</td>
<td>5</td>
<td>6</td>
<td>9</td>
<td>9</td>
<td>10</td>
</tr>
</tbody>
</table>

Activities sorted by finishing time.

Optimal compatible set: \{ a_1, a_3, a_5 \}
Optimal Substructure

• Assume activities are sorted by finishing times.

• Suppose an optimal solution includes activity a_k. This solution is obtained from:
 – An optimal selection of $a_1, ..., a_{k-1}$ activities compatible with one another, and that finish before a_k starts.
 – An optimal solution of $a_{k+1}, ..., a_n$ activities compatible with one another, and that start after a_k finishes.
Optimal Substructure

• Let $S_{ij} =$ subset of activities in S that start after a_i finishes and finish before a_j starts.

$$S_{ij} = \left\{ a_k \in S : \forall i, j \quad f_i \leq s_k < f_k \leq s_j \right\}$$

• $A_{ij} =$ optimal solution to S_{ij}

• $A_{ij} = A_{ik} \cup \left\{ a_k \right\} \cup A_{kj}$
Recursive Solution

- Subproblems: Selecting maximum number of mutually compatible activities from S_{ij}.
- Let $c[i, j] =$ size of maximum-size subset of mutually compatible activities in S_{ij}.

Recursive solution:

$$c[i, j] = \begin{cases}
0 & \text{if } S_{ij} = \emptyset \\
\max\{c[i, k] + c[k, j] + 1\} & \text{if } S_{ij} \neq \emptyset \\
& \hspace{1cm} i < k < j \text{ and } a_k \in S_{ij}
\end{cases}$$

Note: Here, we do not know which k to use for the optimal solution.
Greedy choice

Theorem:
Let $S_{ij} \neq \emptyset$, and let a_m be the activity in S_{ij} with the earliest finish time: $f_m = \min\{ f_k : a_k \in S_{ij} \}$. Then:

1. a_m is used in some maximum-size subset of mutually compatible activities of S_{ij}.
2. $S_{im} = \emptyset$, so that choosing a_m leaves S_{mj} as the only nonempty subproblem.
Greedy choice

Proof:
(1) a_m is used in some maximum-size subset of mutually compatible activities of S_{ij}.

- Let A_{ij} be a maximum-size subset of mutually compatible activities in S_{ij} (i.e. an optimal solution of S_{ij}).
- Order activities in A_{ij} in monotonically increasing order of finish time, and let a_k be the first activity in A_{ij}.
- If $a_k = a_m \Rightarrow$ done.
- Otherwise, let $A'_{ij} = A_{ij} - \{a_k\} U \{a_m\}$
- A'_{ij} is valid because a_m finishes before a_k
- Since $|A_{ij}| = |A'_{ij}|$ and A_{ij} maximal $\Rightarrow A'_{ij}$ maximal too.
Greedy choice

Proof:

(2) $S_{im} = \emptyset$, so that choosing a_m leaves S_{mj} as the only nonempty subproblem.

If there is $a_k \in S_{im}$ then $f_i \leq s_k < f_k \leq s_m < f_m \Rightarrow f_k < f_m$ which contradicts the hypothesis that a_m has the earlier finish.
Greedy choice

<table>
<thead>
<tr>
<th></th>
<th>Before theorem</th>
<th>After theorem</th>
</tr>
</thead>
<tbody>
<tr>
<td># subproblems in</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>optimal solution</td>
<td></td>
<td></td>
</tr>
<tr>
<td># choices to consider</td>
<td>j-i-1</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A_{ij} = A_{ik} U { a_k } U A_{kj}</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A_{ij} = { a_m } U A_{mj}</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

We can now solve the problem S_{ij} top-down:

- Choose $a_m \subseteq S_{ij}$ with the earliest finish time (greedy choice).
- Solve S_{mj}.
Activity-selection Problem

<table>
<thead>
<tr>
<th>i</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>s_i</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>8</td>
</tr>
<tr>
<td>f_i</td>
<td>2</td>
<td>3</td>
<td>5</td>
<td>6</td>
<td>9</td>
<td>9</td>
<td>10</td>
</tr>
</tbody>
</table>

Activities sorted by finishing time.
Activity-selection Problem

<table>
<thead>
<tr>
<th>i</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>(s_i)</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>8</td>
</tr>
<tr>
<td>(f_i)</td>
<td>2</td>
<td>3</td>
<td>5</td>
<td>6</td>
<td>9</td>
<td>9</td>
<td>10</td>
</tr>
</tbody>
</table>

Activities sorted by finishing time.
Activity-selection Problem

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>i</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>s_i</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>8</td>
</tr>
<tr>
<td>f_i</td>
<td>2</td>
<td>3</td>
<td>5</td>
<td>6</td>
<td>9</td>
<td>9</td>
<td>10</td>
</tr>
</tbody>
</table>

Activities sorted by finishing time.
Activity-selection Problem

<table>
<thead>
<tr>
<th>i</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>s_i</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>8</td>
</tr>
<tr>
<td>f_i</td>
<td>2</td>
<td>3</td>
<td>5</td>
<td>6</td>
<td>9</td>
<td>9</td>
<td>10</td>
</tr>
</tbody>
</table>

Activities sorted by finishing time.
Recursive Algorithm

Recursive-Activity-Selector \((s, f, i, n)\)

1. \(m \leftarrow i + 1\)
2. while \(m \leq n\) and \(s_m < f_i\) \hspace{1cm} //\text{Find first activity in } S_{i,n+1}
3. \hspace{1cm} do \(m \leftarrow m + 1\)
4. \hspace{1cm} if \(m \leq n\)
5. \hspace{2cm} then return \(\{a_m\} \cup \)
6. \hspace{2cm} \hspace{1cm} Recursive-Activity-Selector\((s, f, m, n)\)
7. \hspace{1cm} else return \(\emptyset\)

Initial Call: Recursive-Activity-Selector \((s, f, 0, n+1)\)
Complexity: \(\Theta(n)\)

Note 1: We assume activities are already ordered by finishing time.
Note 2: Straightforward to convert the algorithm to an iterative one.
Typical Steps

• Cast the optimization problem as one in which we make a choice and are left with one subproblem to solve.
• Prove that there is always an optimal solution that makes the greedy choice (greedy choice is safe).
• Show that greedy choice and optimal solution to subproblem \Rightarrow optimal solution to the problem.
• Make the greedy choice and **solve top-down**.
• You may have to preprocess input to put it into greedy order (e.g. sorting activities by finish time).
Elements of Greedy Algorithms

No general way to tell if a greedy algorithm is optimal, but two key ingredients are:

• Greedy-choice Property.
 – A globally optimal solution can be arrived at by making a locally optimal (greedy) choice.

• Optimal Substructure.
Text Compression

• Given a string X, efficiently encode X into a smaller string Y
 – Saves memory and/or bandwidth

• A good approach: **Huffman encoding**
 – Compute frequency $f(c)$ for each character c.
 – Encode high-frequency characters with short code words
 – No code word is a prefix for another code
 – Use an optimal encoding tree to determine the code words
Encoding Tree Example

- A **code** is a mapping of each character of an alphabet to a binary code-word
- A **prefix code** is a binary code such that no code-word is the prefix of another code-word
- An **encoding tree** represents a prefix code
 - Each external node (leaf) stores a character
 - The code word of a character is given by the path from the root to the external node storing the character (0 for a left child and 1 for a right child)
Encoding Example

Initial string: $X = \text{acda}$

Encoded string: $X = 00 \ 011 \ 10 \ 00$
Encoding Tree Optimization

• Given a text string X, we want to find a prefix code for the characters of X that yields a small encoding for X
 – Frequent characters should have long code-words
 – Rare characters should have short code-words

• Example
 – $X = \text{abracadabra}$
 – T_1 encodes X into 29 bits
 – T_2 encodes X into 24 bits
Example

$X = \text{abracadabra}$

Frequencies

<table>
<thead>
<tr>
<th>a</th>
<th>b</th>
<th>c</th>
<th>d</th>
<th>r</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>2</td>
</tr>
</tbody>
</table>

\[X = \text{abracadabra} \]

- **Frequencies:**
 - a: 5
 - b: 2
 - c: 1
 - d: 1
 - r: 2

\[\begin{align*}
X &= abracadabra \\
\text{Frequencies} &= \begin{array}{cccc}
a & b & c & d \\
5 & 2 & 1 & 1
\end{array} \\
\end{align*} \]

- **Tree Representation:**

\[\begin{align*}
\text{Tree} &= \begin{array}{ccc}
\text{a} & \text{b} & \text{c} \\
5 & 2 & 1
\end{array} \\
\text{Tree} &= \begin{array}{ccc}
\text{a} & \text{b} & \text{c} \\
5 & 2 & 1
\end{array}
\end{align*} \]
Extended Huffman Tree Example

String: a fast runner need never be afraid of the dark

<table>
<thead>
<tr>
<th>Character</th>
<th>a</th>
<th>b</th>
<th>d</th>
<th>e</th>
<th>f</th>
<th>h</th>
<th>i</th>
<th>k</th>
<th>n</th>
<th>o</th>
<th>r</th>
<th>s</th>
<th>t</th>
<th>u</th>
<th>v</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frequency</td>
<td>9</td>
<td>5</td>
<td>1</td>
<td>3</td>
<td>7</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>4</td>
<td>1</td>
<td>5</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

Huffman tree
Huffman’s Algorithm

- Given a string X, Huffman’s algorithm constructs a prefix code that minimizes the size of the encoding of X.
- It runs in time $O(n + d \log d)$, where n is the size of X and d is the number of distinct characters of X.
- A heap-based priority queue is used as an auxiliary structure.

Algorithm **HuffmanEncoding**(X)

<table>
<thead>
<tr>
<th>Input</th>
<th>string X of size n</th>
</tr>
</thead>
<tbody>
<tr>
<td>Output</td>
<td>optimal encoding trie for X</td>
</tr>
</tbody>
</table>

1. $C \leftarrow $ distinctCharacters(X)
2. $C \leftarrow $ computeFrequencies(C, X)
3. $Q \leftarrow $ new empty heap
4. for all $c \in C$
 a. $T \leftarrow $ new single-node tree storing c
 b. $Q.insert(getFrequency(c), T)$
5. while $Q.size() > 1$
 a. $f_1 \leftarrow Q.minKey()$
 b. $T_1 \leftarrow Q.removeMin()$
 c. $f_2 \leftarrow Q.minKey()$
 d. $T_2 \leftarrow Q.removeMin()$
 e. $T \leftarrow join(T_1, T_2)$
 f. $Q.insert(f_1 + f_2, T)$
6. return $Q.removeMin()$