COMP251: Greedy algorithms

Jérôme Waldspühl
School of Computer Science
McGill University

Based on (Cormen et al., 2002)
Based on slides from D. Plaisted (UNC) & (goodrich & Tamassia, 2009)

Overview

• Algorithm design technique to solve optimization problems.
• Problems exhibit optimal substructure.
• Idea (the greedy choice):
 – When we have a choice to make, make the one that looks best right now.
 – Make a locally optimal choice in hope of getting a globally optimal solution.

Greedy Strategy

The choice that seems best at the moment is the one we go with.
– Prove that when there is a choice to make, one of the optimal choices is the greedy choice. Therefore, it is always safe to make the greedy choice.
– Show that all but one of the sub-problems resulting from the greedy choice are empty.

Activity-selection Problem

• Input: Set S of n activities, $a_1, a_2, ..., a_n$.
 – s_i = start time of activity i.
 – f_i = finish time of activity i.
• Output: Subset A of maximum number of compatible activities.
 – 2 activities are compatible, if their intervals do not overlap.

Example:

<table>
<thead>
<tr>
<th>i</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>s_i</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>8</td>
</tr>
<tr>
<td>f_i</td>
<td>2</td>
<td>3</td>
<td>5</td>
<td>6</td>
<td>9</td>
<td>9</td>
<td>10</td>
</tr>
</tbody>
</table>

Activities sorted by finishing time.

Optimal compatible set: $\{a_1, a_4, a_5\}$

Optimal Substructure

• Assume activities are sorted by finishing times.
• Suppose an optimal solution includes activity a_i. This solution is obtained from:
 – An optimal selection of $a_1, ..., a_{i-1}$ activities compatible with one another, and that finish before a_i starts.
 – An optimal solution of $a_{i+1}, ..., a_n$ activities compatible with one another, and that start after a_i finishes.
Optimal Substructure

- Let \(S_i \) = subset of activities in \(S \) that start after \(a_i \) finishes and finish before \(a_i \) starts.
 \(S_i = \{ a_j \in S : \forall i, j \quad f_i \leq s_j < f_j \leq s_j \} \)
- \(A_i \) = optimal solution to \(S_i \)
- \(A_i \) = \(A_{i+1} \cup \{ a_i \} \cup A_i \)

Recursive Solution

- Subproblems: Selecting maximum number of mutually compatible activities from \(S_i \)
- Let \(c[i,j] \) = size of maximum-size subset of mutually compatible activities in \(S_i \)

Recursive solution:

\[
c[i,j] = \begin{cases}
0 & \text{if } S_i = \emptyset \\
\max_{i \leq k < j} \{ c[i,k] + c[k+1,j] + 1 \} & \text{if } S_i \neq \emptyset
\end{cases}
\]

Note: We do not know which \(k \) to use for the optimal solution.

Greedy choice

Theorem:
Let \(S_i \neq \emptyset \), and let \(a_m \) be the activity in \(S_i \) with the earliest finish time: \(f_m = \min\{ f_i : a_i \in S_i \} \). Then:

1. \(a_m \) is used in some maximum-size subset of mutually compatible activities of \(S_i \).
2. \(S_{ij} \neq \emptyset \), so that choosing \(a_m \) leaves \(S_{im} \) as the only nonempty subproblem.

Proof:

(2nd part) If there is \(a_n \in S_n \) then \(f_s, s_i < f_n < s_n \) and \(f_s < f_i \), which contradicts the hypothesis that \(a_m \) has the earlier finish.

(1st part)
- Let \(A_i \) be a maximum-size subset of mutually compatible activities in \(S_i \); i.e., an optimal solution of \(S_i \).
- Order activities in \(A_i \) in monotonically increasing order of finish time, and let \(a_i \) be the activity with earliest finish time.
- If \(a_i = a_m \) then done.
- Otherwise, construct \(A' \rightarrow A_i \cup \{ a_m \} \)
- By definition, \(a_m \) finishes before \(a_i \). Thus, \(A' \) does not overlap with anything in \(A_i \).
- \(|A_j| = |A' \rangle \) and \(A_i \) maximal, thus \(A' \rightarrow A_i \).

Greedy choice

<table>
<thead>
<tr>
<th>(i)</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>(s_i)</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>8</td>
</tr>
<tr>
<td>(f_i)</td>
<td>2</td>
<td>3</td>
<td>5</td>
<td>6</td>
<td>9</td>
<td>9</td>
<td>10</td>
</tr>
</tbody>
</table>

Activities sorted by finishing time.

Activity-selection Problem

We can now solve the problem top-down:
- Choose \(a_m \in S_i \) with the earliest finish time (greedy choice).
- Solve \(S_i \).
15-01-28

Activity-selection Problem

<table>
<thead>
<tr>
<th>i</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>s_i</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>8</td>
</tr>
<tr>
<td>f_i</td>
<td>2</td>
<td>3</td>
<td>5</td>
<td>6</td>
<td>9</td>
<td>9</td>
<td>10</td>
</tr>
</tbody>
</table>

Activities sorted by finishing time.

Recursive Algorithm

Recursive-Activity-Selector (s, f, i, j)

1. $m ← i+1$
2. while $m < j$ and $s_m < f_i$
3. do $m ← m+1$
4. if $m < j$
5. then return $(a_m) U$
6. else return φ

Initial Call: Recursive-Activity-Selector $(s, f, 0, n+1)$

Complexity: $Θ(n)$

Remark: Straightforward to convert the algorithm to an iterative one.

Typical Steps

- Cast the optimization problem as one in which we make a choice and are left with one subproblem to solve.
- Prove that there’s always an optimal solution that makes the greedy choice, so that the greedy choice is always safe.
- Show that greedy choice and optimal solution to subproblem imply optimal solution to the problem.
- Make the greedy choice and solve top-down.
- May have to preprocess input to put it into greedy order (e.g. sorting activities by finish time).

Elements of Greedy Algorithms

No general way to tell if a greedy algorithm is optimal, but two key ingredients are:

- Greedy-choice Property.
 - A globally optimal solution can be arrived at by making a locally optimal (greedy) choice.
- Optimal Substructure.
Text Compression

• Given a string X, efficiently encode X into a smaller string Y
 – Saves memory and/or bandwidth
• A good approach: Huffman encoding
 – Compute frequency f(c) for each character c.
 – Encode high-frequency characters with short code words
 – No code word is a prefix for another code
 – Use an optimal encoding tree to determine the code words

Encoding Tree Example

• A code is a mapping of each character of an alphabet to a binary code-word
• A prefix code is a binary code such that no code-word is the prefix of another code-word
• An encoding tree represents a prefix code
 – Each external node stores a character
 – The code word of a character is given by the path from the root to the external node storing the character (0 for a left child and 1 for a right child)

Encoding Tree Optimization

• Given a text string X, we want to find a prefix code for the characters of X that yields a small encoding for X
 – Frequent characters should have long code-words
 – Rare characters should have short code-words
• Example
 – X = abracadabra
 – T₁ encodes X into 29 bits
 – T₂ encodes X into 24 bits

Example

X = abracadabra
Frequencies
<table>
<thead>
<tr>
<th>Character</th>
<th>Frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>5</td>
</tr>
<tr>
<td>b</td>
<td>2</td>
</tr>
<tr>
<td>c</td>
<td>1</td>
</tr>
<tr>
<td>d</td>
<td>2</td>
</tr>
</tbody>
</table>

Extended Huffman Tree Example

Extended Huffman’s Algorithm

• Given a string X, Huffman’s algorithm constructs a prefix code the minimizes the size of the encoding of X
• It runs in time $O(n + d \log d)$, where n is the size of X and d is the number of distinct characters of X
• A heap-based priority queue is used as an auxiliary structure

Huffman’s Algorithm

Algorithm HuffmanEncoding(X)
Input: string X of size n
Output: optimal encoding trie for X
\[C \leftarrow \text{distinctCharacters}(X) \]
\[\text{computeFrequencies}(C, X) \]
\[Q \leftarrow \text{new empty heap} \]
for all $c \in C$
\[T_c \leftarrow \text{new single-node tree storing } c \]
\[Q.insert(getFrequency(c), T_c) \]
while Q.size() > 1
\[f_1 \leftarrow Q.minKey() \]
\[T_1 \leftarrow Q.removeMin() \]
\[f_2 \leftarrow Q.minKey() \]
\[T_2 \leftarrow Q.removeMin() \]
\[T \leftarrow \text{join}(T_1, T_2) \]
\[Q.insert(f_1 + f_2, T) \]
return Q.removeMin()