COMP251: Red-black trees

Jérôme Waldispühl
School of Computer Science
McGill University
Based on (Cormen et al., 2002)
Based on slides from D. Plaisted (UNC)

Recap lecture 3

Definition: An AVL tree is a BST such that the heights of the two child subtrees of any node differ by at most one.

- AVL trees are self-balanced binary search trees.
- Insert, Delete & Search take $O(\log n)$ in average and worst cases.

Recap lecture 3

Rotations preserve the BST property.
Proof: elements in B are $\geq x$ and $\leq y$...

Insert in AVL trees

Right rotation at 27

Left rotation at 43
Red-black trees: Overview

- Red-black trees are a variation of binary search trees to ensure that the tree is balanced.
 - Height is $O(\lg n)$, where n is the number of nodes.
- Operations take $O(\lg n)$ time in the worst case.
- Invented by R. Bayer (1972).

Red-black Tree

- Binary search tree + 1 bit per node: the attribute color, which is either red or black.
- All other attributes of BSTs are inherited: key, left, right, and parent.
- All empty trees (leaves) are colored black.
 - It is possible can use a single sentinel, nil, for all the leaves of red-black tree T, with $\text{color(nil)} = \text{black}$.
 - The root’s parent is also nil[T].

Red-black Properties

1. Every node is either red or black.
2. The root is black.
3. Every leaf (nil) is black.
4. If a node is red, then its children are black (i.e. no 2 consecutive red nodes).
5. For each node, all paths from the node to descendant leaves contain the same number of black nodes (i.e. same black height).

Height of a Red-black Tree

- Height of a node:
 - $h(x) =$ number of edges in a longest path to a leaf.
- Black-height of a node x, $bh(x)$:
 - $bh(x) =$ number of black nodes (including nil[T]) on the path from x to leaf, not counting x.
- Black-height of a red-black tree is the black-height of its root.
 - By Property 5, black height is well defined.
Height of a Red-black Tree

- **Height h(x):**
 - # edges in a longest path to a leaf.
 - Black-height bh(x):
 - # black nodes on path from x to leaf, not counting x.
- **Property:** bh(x) ≤ h(x) ≤ 2bh(x)

Bound on RB Tree Height

Lemma 1: Any node x with height h(x) has a black-height bh(x) ≥ h(x)/2.

Proof: By property 4, ≤ h / 2 nodes on the path from the node to a leaf are red. Hence ≥ h/2 are black.

Lemma 2: The subtree rooted at any node x contains a 2^h/2−1 internal nodes.

Proof: By induction on height of x.
- **Base Case:** Height h(x) = 0 ⇒ x is a leaf ⇒ bh(x) = 0. Subtree has 2^0−1 = 0 nodes.
- **Induction Step:**
 - Each child of x has height h(x) - 1 and black-height either bh(x) (child is red) or h(x) - 1 (child is black).
 - By induction hypothesis, each child has at least 2^h/2−1−1 internal nodes.
 - Subtree rooted at x has at least 2(2^h/2) − 1 + 1
 = 2^h/2 – 1 internal nodes. (The +1 is for x itself)

Lemma 3: A red-black tree with n internal nodes has height at most 2lg(n+1).

Proof:
- By lemma 2, n ≥ 2^h − 1,
- By lemma 1, bh ≥ h/2, thus n ≥ 2^h/2 − 1.
- ⇒ h ≤ 2 lg(n + 1).

Insertion in RB Trees

- **Insertion must preserve all red-black properties.**
- **Should an inserted node be colored Red? Black?**
- **Basic steps:**
 - Use BST Tree-Insert to insert a node x into T.
 - Procedure RB-Insert(x).
 - Color the node x red.
 - Fix the new tree by (1) re-coloring nodes, and (2) performing rotation to preserve RB tree property.
 - Procedure RB-Insert-Fixup.

RB-Insert(7, z)

1. y ← nil(T)
2. x ← nil(T)
3. while x ≠ nil(T)
4. do y ← x
5. if key(x) < key(z)
6. then x ← left(y)
7. else x ← right(y)
8. p(x) ← y
9. if y = nil(T)
10. then root(T) ← z
11. else if key(x) < key(y)
12. then left(y) ← z
13. else right(y) ← z

RB-Insert(7, z) Cond.

14. left(z) ← nil(T)
15. right(z) ← nil(T)
16. color(z) ← RED
17. RB-Insert-Fixup(7, z)

Regular BST insert + color assignment + fixups.
Insert RB Tree – Example

Insert(RB Tree – Example)

Insert(T,15)

Recolor 10, 8 & 11

Right rotate at 18

Right rotate at 18 (parent & child with conflict are aligned)

Left rotate at 7
• **Insert RB Tree – Example**

 ![Insert RB Tree – Example](image)

 Left rotate at 7

 Recolor 10 & 7 (root must be black)!

• **Insertion – Fixup**

 RB-Insert-Fixup (T, z)
 1. while color([p[z]]) = RED
 2. do if p[z] = left([p[z]])
 3. then y ← right([p[z]])
 4. if color(y) = RED
 5. then color(p[z]) ← BLACK // Case 1
 6. color(y) ← BLACK // Case 1
 7. color([p[z]]) ← RED // Case 1
 8. z ← p[z] // Case 1

• **Case 1 – uncle y is red**

 ![Case 1 – uncle y is red](image)

 - p[z] must be black since z and p[z] are both red and there are no other violations of property 4.
 - Make p[z] and y black ⇒ now z and p[z] are not both red. But property 5 might now be violated.
 - Make p[z] red ⇒ restores property 5.
 - The next iteration has p[z] as the new z (i.e., z moves up 2 levels).

• **Case 2 – y is black, z is a right child**

 ![Case 2 – y is black, z is a right child](image)

 - Left rotate around p[z], p[z] and z switch roles ⇒ now z is a left child, and both z and p[z] are red.
 - Takes us immediately to case 3.

• **RB-Insert-Fixup(T, z) (Contd.)**
 9. else if z = right([p[z]]) // color(y) = RED
 10. then y ← p[z] // Case 2
 11. LEFT-ROTATE(T, z) // Case 2
 12. color([p[z]]) ← BLACK // Case 3
 13. color([p[z]]) ← RED // Case 3
 14. RIGHT-ROTATE(T, p[z]) // Case 3
 15. else (if p[z] = right([p[z]]))(same as 10-14
 16. with “right” and “left” exchanged)
 17. color(root(T)) ← BLACK
Case 3 – y is black, z is a left child

- Make \(p[z] \) black and \(p[p[z]] \) red.
- Then right rotate on \(p[p[z]] \). Ensures property 4 is maintained.
- No longer have 2 reds in a row.
- \(p[z] \) is now black \(\Rightarrow \) no more iterations.

Algorithm Analysis

- \(O(\lg n) \) time to get through RB-Insert up to the call of RB-Insert-Fixup.
- Within RB-Insert-Fixup:
 - Each iteration takes \(O(1) \) time.
 - Each iteration but the last moves \(z \) up 2 levels.
 - \(O(\lg n) \) levels \(\Rightarrow \) \(O(\lg n) \) time.
 - Thus, insertion in a red-black tree takes \(O(\lg n) \) time.
 - Note: there are at most 2 rotations overall.

Correctness

Loop invariant:
- At the start of each iteration of the while loop,
 - \(z \) is red.
 - If \(p[z] \) is the root, then \(p[z] \) is black.
 - There is at most one red-black violation:
 - Property 2: \(z \) is a red root, or
 - Property 4: \(z \) and \(p[z] \) are both red.

Correctness – Contd.

- Initialization: ✓
- Termination: The loop terminates only if \(p[z] \) is black. Hence, property 4 is OK.
 - The last line ensures property 2 always holds.
- Maintenance: We drop out when \(z \) is the root (since then \(p[z] \) is sentinel \(nil[T] \), which is black). When we start the loop body, the only violation is of property 4.
 - There are 6 cases, 3 of which are symmetric to the other 3.
 - We consider cases in which \(p[z] \) is a left child.
 - Let \(y \) be \(z \)'s uncle (\(p[z] \)'s sibling).