COMP251: Binary search trees, AVL trees & AVL sort

Jérôme Waldispühl
School of Computer Science
McGill University

From Lecture notes by E. Demaine (2009)
Outline

• Review of binary search trees
• AVL-trees
• Rotations
• BST & AVL sort
Binary search trees (BSTs)

- T is a rooted binary tree
- Key of a node \(x \geq \) keys in its left subtree.
- Key of a node \(x \leq \) keys in its right subtree.
Operations on BSTs

- Search(T,k): $\Theta(h)$
- Insert(T,x): $\Theta(h)$
- Delete(T,x): $\Theta(h)$

Where h is the height of the BST.
Height of a tree

Height(n): length (#edges) of longest downward path from node n to a leaf.

\[
\text{Height}(x) = 1 + \max(\text{height}(\text{left}(x)), \text{height}(\text{right}(x)))
\]
Good vs. Bad BSTs

Balanced
\(h = \Theta(\log n) \)

Unbalanced
\(h = \Theta(n) \)
AVL trees

Definition: BST such that the heights of the two child subtrees of any node differ by at most one.

- AVL trees are self-balanced binary search trees.
- Insert, Delete & Search take $O(\log n)$ in average and worst cases.
Height of a AVL tree

\(N_h = \text{minimum #nodes in an AVL tree of height } h. \)

\[
N_h = 1 + N_{h-1} + N_{h-2} > 2 \cdot N_{h-2}
\]

\(\Rightarrow \quad N_h > \Theta(2^{h/2}) \)

\(\Rightarrow \quad h < 2 \cdot \log N_h \)

\(\Rightarrow \quad h = O(\log n) \)

(a tighter bound can be found using Fibonacci numbers)
Insert in AVL trees

1. Insert as in standard BST
2. Re-establish AVL tree properties

\[x \]

\[N_{h-2} \rightarrow \]

\[N_{h-1} \]

\[\xrightarrow{\leftrightarrow} : \text{Left tree is higher} \]
\[= : \text{Balanced} \]
\[\xrightarrow{\rightarrow} : \text{Right tree is higher} \]
Insert in AVL trees

Insert(T, 15)

How to restore AVL property?
Rotations preserve the BST property.

Proof: elements in B are ≥ x and ≤ y...
Insert in AVL trees

Right rotation at 27
Insert in AVL trees

Right rotation at 57

Insert(T, 50)
RotateRight(T, 57)

How to restore AVL property?
Insert in AVL trees

Left rotation at 43

RotateLeft(T,43)
Insert in AVL trees

Right rotation at 57

RotateRight(T, 57)
Insert in AVL trees

1. Suppose x is lowest node violating AVL
2. If x is right-heavy:
 • If x’s right child is right-heavy or balanced: Left rotation (case A)
 • Else: Right followed by left rotation (case B)
3. If x is left-heavy:
 • If x’s left child is left-heavy or balanced: Right rotation (symmetric of case A)
 • Else: Left followed by right rotation (sym. of case B)
4. then continue up to x’s ancestors.
Case A

Left rotation

Left rotation
Case B

Right rotation at y & Left rotation at x
Running time AVL insertion

- Insertion in $O(h)$
- At most 2 rotations in $O(1)$
- Running time is $O(h) + O(1) = O(h) = O(\log n)$ in AVL trees.
In-order traversal & BST

```java
inorderTraversal(treeNode x)
inorderTraversal(x.leftChild);
print x.value;
inorderTraversal(x.rightChild);
```

- Print the nodes in the left subtree (A), then node x, and then the nodes in the right subtree (B).
- In a BST, keys in A \(\leq x \), and keys in B \(\geq x \).
- In a BST, it prints first keys \(\leq x \), then x, and then keys \(\geq x \).
In-order traversal & BST

8, 12, 15, 20, 27, 36, 43, 57

All keys come out sorted!
BST sort

1. Build a BST from the list of keys (unsorted)
2. Use in-order traversal on the BST to print the keys.

| 36 | 12 | 8 | 57 | 43 | 27 |

→ 8, 12, 27, 36, 43, 57

Running time of BST sort: insertion of n keys + tree traversal.
Running time of BST sort

- In-order traversal is $\Theta(n)$
- Running time of insertion is $O(h)$

Best case: The BST is always balanced for every insertion.

$$\Omega(n \log(n))$$

Worst case: The BST is always un-balanced. All insertions on same side.

$$\sum_{i=1}^{n} i = \frac{n \cdot (n-1)}{2} = O(n^2)$$
AVL sort

Same as BST sort but use AVL trees and AVL insertion instead.

- Worst case running time can be brought to $O(n \log n)$ if the tree is always balanced.
- Use AVL trees (trees are balanced).
- Insertion in AVL trees are $O(h) = O(\log n)$ for balanced trees.