COMP251: Amortized Analysis

Jérôme Waldispühl
School of Computer Science
McGill University

Based on (Cormen et al., 2009)
\[T(n) = 2 \cdot T\left(\frac{n}{5}\right) + n^3 \]

What is the height of the recursion tree?

- \(\log_3 n \) \(\times \)
- \(\log_5 n \) \(\checkmark \)
- \(\log_2 n \) \(\times \)

- \(\log_3 (n) \) 4 36.4%
- \(\log_5 (n) \) 7 63.6%
- \(\log_2 (n) \) 0 0%
\(T(n) = 3 \cdot T \left(\frac{n}{4} \right) + n \log n \)

- \(\Theta(n(\log n)^2) \) ✗
- \(\Theta(n \log n) \) ✓ (case 3)
- \(\Theta(n \log_4 3) \) ✗
- Not applicable ✗
\[T(n) = 4 \cdot T\left(\frac{n}{2}\right) + \log n \]

- $\Theta(\log n)$ ✗
- $\Theta(n^2)$ ✓ (case 1)
- $\Theta((\log n)^2)$ ✗
- Not applicable ✗

$a = 4; b = 2$

\[k = \log_2 4 = 2 \]

\[f(n) = \log n \]

\[f(n) = O(n^{2-1}) \]

\[\text{\textbackslash Tetha (log n)} 2 \quad 18.2\% \]

\[\text{\textbackslash Tetha (n^2)} 6 \quad 54.5\% \]

\[\text{\textbackslash Theta (log^2 n)} 1 \quad 9.1\% \]

The master theorem cannot be applied 2 18.2\%
Overview

• Analyze a sequence of operations on a data structure.

• We will talk about average cost in the worst case (i.e. not averaging over a distribution of inputs. No probability!)

• **Goal:** Show that although some individual operations may be expensive, on average the cost per operation is small.

• 3 methods:
 1. aggregate analysis
 2. accounting method
 3. potential method
Aggregate analysis

Stack operations

• \(\text{PUSH}(S, x) \): \(O(1) \) each \(\Rightarrow O(n) \) for any sequence of \(n \) operations.

• \(\text{POP}(S) \): \(O(1) \) each \(\Rightarrow O(n) \) for any sequence of \(n \) operations.

• \(\text{MULTIPOP}(S, k) \):

 \[
 \text{while } S \neq \emptyset \text{ and } k > 0 \text{ do}
 \]

 \[
 \text{POP}(S)
 \]

 \[
 k \leftarrow k - 1
 \]

Running time of \(\text{MULTIPOP} \)?
Running time of MULTIPOP

- Linear in # of POP operations.
- Let each PUSH/POP cost 1.
- # of iterations of **while** loop is \(\min(s, k) \), where \(s = \# \) of objects on stack. Therefore, total cost = \(\min(s, k) \).

Sequence of \(n \) PUSH, POP, MULTIPOP operations:
- Worst-case cost of MULTIPOP is \(O(n) \).
- Have \(n \) operations.
- Therefore, worst-case cost of sequence is \(O(n^2) \).

But:
- Each object can be popped only once per time that it is pushed.
- Have \(\leq n \) PUSHes \(\Rightarrow \leq n \) POPs, including those in MULTIPOP.
- Therefore, total cost = \(O(n) \).
- Average over the \(n \) operations \(\Rightarrow O(1) \) per operation on average.
Binary counter

- *k*-bit binary counter $A[0 \ldots k - 1]$ of bits, where $A[0]$ is the least significant bit and $A[k - 1]$ is the most significant bit.
- Counts upward from 0.
- Value of counter is: $\sum_{i=0}^{k-1} A[i] \cdot 2^i$
- Initially, counter value is 0, so $A[0 \ldots k - 1] = 0$.
- To increment, add 1 (mod $2k$):

 Increment(A, k):

 $i \leftarrow 0$

 while $i < k$ and $A[i] = 1$ do

 $A[i] \leftarrow 0$

 $i \leftarrow i + 1$

 if $i < k$ then

 $A[i] \leftarrow 1$
Example (1)

$k=3$

<table>
<thead>
<tr>
<th>Counter Value</th>
<th>A</th>
<th>cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>000</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>001</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>010</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>011</td>
<td>4</td>
</tr>
<tr>
<td>4</td>
<td>100</td>
<td>7</td>
</tr>
<tr>
<td>5</td>
<td>101</td>
<td>8</td>
</tr>
<tr>
<td>6</td>
<td>110</td>
<td>10</td>
</tr>
<tr>
<td>7</td>
<td>111</td>
<td>11</td>
</tr>
<tr>
<td>0</td>
<td>000</td>
<td>14</td>
</tr>
</tbody>
</table>

Cost of INCREMENT = Θ(# of bits flipped)

Analysis: Each call could flip k bits, so n INCREMENTs takes $O(nk)$ time.
Example (2)

<table>
<thead>
<tr>
<th>Bit</th>
<th>Flips how often</th>
<th>Time in n INCREMENTs</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Every time</td>
<td>n</td>
</tr>
<tr>
<td>1</td>
<td>½ of the time</td>
<td>floor(n/2)</td>
</tr>
<tr>
<td>2</td>
<td>¼ of the time</td>
<td>floor(n/4)</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>i</td>
<td>1/2^i of the time</td>
<td>floor(n/2^i)</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>i≥k</td>
<td>Never</td>
<td>0</td>
</tr>
</tbody>
</table>

Thus, total # flips = \(\sum_{i=0}^{k-1} \left\lfloor \frac{n}{2^i} \right\rfloor < n \cdot \sum_{i=0}^{\infty} \frac{1}{2^i} = n \left(\frac{1}{1-1/2} \right) = 2 \cdot n \)

Therefore, \(n \) INCREMENTs costs \(O(n) \).
Average cost per operation = \(O(1) \).
Accounting method

Assign different charges to different operations.
• Some are charged more than actual cost.
• Some are charged less.

Amortized cost = amount we charge.

When amortized cost > actual cost, store the difference on specific objects in the data structure as credit. Use credit later to pay for operations whose actual cost > amortized cost.

Differs from aggregate analysis:
• In the accounting method, different operations can have different costs.
• In aggregate analysis, all operations have same cost.

But we need to guarantee that the credit never goes negative.
Definition

Let c_i = cost of actual i^{th} operation.
\hat{c}_i = amortized cost of i^{th} operation.

Then require $\sum_{i=1}^{n} \hat{c}_i \geq \sum_{i=1}^{n} c_i$ for all sequences of n operations.

Total credit stored = $\sum_{i=1}^{n} \hat{c}_i - \sum_{i=1}^{n} c_i \geq 0$
Stack

Intuition: When pushing an object, pay $2.
- $1 pays for the PUSH.
- $1 is prepayment for it being popped by either POP or MULTIPOP.
- Since each object has $1, which is credit, the credit can never go negative.
- Total amortized cost (= $O(n)$) is an upper bound on total actual cost.

<table>
<thead>
<tr>
<th>Operation</th>
<th>Actual cost</th>
<th>Amortized cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>PUSH</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>POP</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>MULTIPOP</td>
<td>min(k,s)</td>
<td>0</td>
</tr>
</tbody>
</table>
Binary counter

Charge $2 to set a bit to 1.
• $1 pays for setting a bit to 1.
• $1 is prepayment for flipping it back to 0.
• Have $1 of credit for every 1 in the counter.
• Therefore, credit ≥ 0.

Amortized cost of INCREMENT:
• Cost of resetting bits to 0 is paid by credit.
• At most 1 bit is set to 1.
• Therefore, amortized cost $\leq $2.
• For n operations, amortized cost = $O(n)$.
Dynamic tables

Scenario
• Have a table - maybe a hash table.
• Don’t know in advance how many objects will be stored in it.
• When it fills, must reallocate with a larger size, copying all objects into the new, larger table.
• When it gets sufficiently small, *might* want to reallocate with a smaller size.

Goals
1. $O(1)$ amortized time per operation.
2. Unused space always \leq constant fraction of allocated space.

Load factor $\alpha = (# \text{ items stored}) / (\text{allocated size})$

Never allow $\alpha > 1$; Keep $\alpha >$ a constant fraction \Rightarrow Goal 2.
Table expansion

Consider only insertion.

• When the table becomes full, double its size and reinsert all existing items.
• Guarantees that \(\alpha \geq \frac{1}{2} \).
• Each time we insert an item into the table, it is an \textit{elementary insertion}.

\[
\text{TABLE-INSERT}(T,x)
\]

\[
\text{if } \text{size}[T]=0 \text{ then allocate } \text{table}[T] \text{ with 1 slot }
\]

\[
\text{size}[T] \leftarrow 1
\]

\[
\text{if } \text{num}[T]=\text{size}[T] \text{ then }
\]

allocate \textit{new-table} with \(2 \cdot \text{size}[T] \) slots

insert all items in \text{table}[T] into \textit{new-table}

\[
\text{free } \text{table}[T]
\]

\[
\text{table}[T] \leftarrow \text{new-table}
\]

\[
\text{size}[T] \leftarrow 2 \cdot \text{size}[T]
\]

insert \(x \) into \text{table}[T]

\[
\text{num}[T] \leftarrow \text{num}[T] + 1 \]

(Initially, \(\text{num}[T]=\text{size}[T]=0 \))
Aggregate analysis

• Charge 1 per elementary insertion.
• Count only elementary insertions (other costs = constant).

\(c_i = \) actual cost of \(i \)th operation

• If not full, \(c_i = \)1.
• If full, have \(i-1 \) items in the table at the start of the \(i \)th operation.

 Have to copy all \(i-1 \) existing items, then insert \(i \)th item \(\Rightarrow c_i = i \).

\(n \) operations \(\Rightarrow c_i = O(n) \Rightarrow O(n^2) \) time for \(n \) operations

\[
c_i = \begin{cases}
 i & \text{if } i-1 \text{ is power of 2} \\
 1 & \text{Otherwise}
\end{cases}
\]

Total cost = \(\sum_{i=1}^{n} c_i \leq n + \sum_{j=0}^{[\log n]} 2^j = n + \frac{2^{[\log n]+1} - 1}{2 - 1} < n + 2n = 3n \)

Amortized cost per operation = 3.
Accounting method

Charge $3 per insertion of x.
- 1 pays for x’s insertion.
- 1 pays for x to be moved in the future.
- 1 pays for some other item to be moved.

Suppose we’ve just expanded, $size=m$ before next expansion, $size=2m$ after next expansion.
- Assume that the expansion used up all the credit, so that there’s no credit stored after the expansion.
- Will expand again after another m insertions.
- Each insertion will put 1 on one of the m items that were in the table just after expansion and will put 1 on the item inserted.
- Have $2m$ of credit by next expansion, when there are $2m$ items to move. Just enough to pay for the expansion...