COMP251: Amortized Analysis

Jérôme Waldispühl
School of Computer Science
McGill University

Based on (Cormen et al., 2009)
Overview

• Analyze a sequence of operations on a data structure.

• We will talk about average cost in the worst case (i.e. not averaging over a distribution of inputs.)

• **Goal:** Show that although some individual operations may be expensive, on average the cost per operation is small.

• 3 methods:
 1. aggregate analysis
 2. accounting method
 3. potential method
Aggregate analysis

Stack operations

- **PUSH(S, x):** $O(1)$ each $\implies O(n)$ for any sequence of n operations.
- **POP(S):** $O(1)$ each $\implies O(n)$ for any sequence of n operations.
- **MULTIPOP(S,k):**

  ```
  while S≠∅ and k>0 do
    POP(S)  k←k−1
  ```

Running time of MULTIPOP?
Running time of MULTIPOP

- Linear in # of POP operations.
- Let each PUSH/POP cost 1.
- # of iterations of \textbf{while} loop is \(\min(s, k) \), where \(s = \# \) of objects on stack. Therefore, total cost = \(\min(s, k) \).

Sequence of \(n \) PUSH, POP, MULTIPOP operations:
- Worst-case cost of MULTIPOP is \(O(n) \).
- Have \(n \) operations.
- Therefore, worst-case cost of sequence is \(O(n^2) \).

But:
- Each object can be popped only once per time that it is pushed.
- Have \(\leq n \) PUSHes \(\Rightarrow \leq n \) POPs, including those in MULTIPOP. Therefore, total cost = \(O(n) \).
- Average over the \(n \) operations \(\Rightarrow O(1) \) per operation on average.
Binary counter

- k-bit binary counter $A[0..k-1]$ of bits, where $A[0]$ is the least significant bit and $A[k-1]$ is the most significant bit.
- Counts upward from 0.
- Value of counter is: $\sum_{i=0}^{k-1} A[i] \cdot 2^i$
- Initially, counter value is 0, so $A[0..k-1] = 0$.
- To increment, add 1 (mod $2k$):
 - Increment(A,k):
 - $i \leftarrow 0$
 - while $i < k$ and $A[i] = 1$ do
 - $A[i] \leftarrow 0$
 - $i \leftarrow i + 1$
 - if $i < k$ then
 - $A[i] \leftarrow 1$
Example (1)

For $k=3$:

<table>
<thead>
<tr>
<th>Counter Value</th>
<th>A</th>
<th>cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>000</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>001</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>010</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>011</td>
<td>4</td>
</tr>
<tr>
<td>4</td>
<td>100</td>
<td>7</td>
</tr>
<tr>
<td>5</td>
<td>101</td>
<td>8</td>
</tr>
<tr>
<td>6</td>
<td>110</td>
<td>10</td>
</tr>
<tr>
<td>7</td>
<td>111</td>
<td>11</td>
</tr>
<tr>
<td>0</td>
<td>000</td>
<td>14</td>
</tr>
</tbody>
</table>

Cost of INCREMENT = (# of bits flipped)

Analysis: Each call could flip k bits, so n INCREMENTs takes $O(nk)$ time.
Example (2)

<table>
<thead>
<tr>
<th>Bit</th>
<th>Flips how often</th>
<th>Time in n INCREMENTs</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Every time</td>
<td>n</td>
</tr>
<tr>
<td>1</td>
<td>½ of the time</td>
<td>floor(n/2)</td>
</tr>
<tr>
<td>2</td>
<td>¼ of the time</td>
<td>floor(n/4)</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>i</td>
<td>1/2^i of the time</td>
<td>floor(n/2^i)</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>i≥k</td>
<td>Never</td>
<td>0</td>
</tr>
</tbody>
</table>

Thus, total # flips = \[
\sum_{i=0}^{k-1} \left\lfloor \frac{n}{2^i} \right\rfloor < n \cdot \sum_{i=0}^{\infty} \frac{1}{2^i} = n \left(\frac{1}{1-1/2} \right) = 2 \cdot n \]

Therefore, \(n \) INCREMENTs costs \(O(n) \).
Average cost per operation = \(O(1) \).
Accounting method

Assign different charges to different operations.
• Some are charged more than actual cost.
• Some are charged less.

Amortized cost = amount we charge.

When amortized cost > actual cost, store the difference on specific objects in the data structure as *credit*.
Use credit later to pay for operations whose actual cost > amortized cost.

Differs from aggregate analysis:
• In the accounting method, different operations can have different costs.
• In aggregate analysis, all operations have same cost.

Warning: Need credit to never go negative.
Definition

Let $c_i = \text{cost of actual } i^{\text{th}} \text{ operation.}$

$\hat{c}_i = \text{amortized cost of } i^{\text{th}} \text{ operation.}$

Then require $\sum_{i=1}^{n} \hat{c}_i \geq \sum_{i=1}^{n} c_i$ for all sequences of n operations.

Total credit stored $= \sum_{i=1}^{n} \hat{c}_i - \sum_{i=1}^{n} c_i \geq 0$
Stack

<table>
<thead>
<tr>
<th>Operation</th>
<th>Actual cost</th>
<th>Amortized cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>PUSH</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>POP</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>MULTIPOP</td>
<td>min(k,s)</td>
<td>0</td>
</tr>
</tbody>
</table>

Intuition: When pushing an object, pay $2.

- $1 pays for the PUSH.
- $1 is prepayment for it being popped by either POP or MULTIPOP.
- Since each object has $1, which is credit, the credit can never go negative.
- Total amortized cost, $= O(n)$, is an upper bound on total actual cost.
Binary counter

Charge $2 to set a bit to 1.
- $1 pays for setting a bit to 1.
- $1 is prepayment for flipping it back to 0.
- Have $1 of credit for every 1 in the counter.
- Therefore, credit ≥ 0.

Amortized cost of INCREMENT:
- Cost of resetting bits to 0 is paid by credit.
- At most 1 bit is set to 1.
- Therefore, amortized cost ≤ $2.
- For n operations, amortized cost = $O(n)$.
Dynamic tables

Scenario
• Have a table - maybe a hash table.
• Don’t know in advance how many objects will be stored in it.
• When it fills, must reallocate with a larger size, copying all objects into the new, larger table.
• When it gets sufficiently small, might want to reallocate with a smaller size.

Goals
1. $O(1)$ amortized time per operation.
2. Unused space always \leq constant fraction of allocated space.

Load factor $\alpha = (\# \text{ items stored}) / (\text{allocated size})$

Never allow $\alpha > 1$; Keep $\alpha >$ a constant fraction \Rightarrow Goal 2.
Table expansion

Consider only insertion.

• When the table becomes full, double its size and reinsert all existing items.
• Guarantees that $\alpha \geq \frac{1}{2}$.
• Each time we insert an item into the table, it is an elementary insertion.

TABLE-INSERT(T, x)

if $size[T] = 0$
 then allocate $table[T]$ with 1 slot
 $size[T] \leftarrow 1$

if $num[T] = size[T]$ then
 allocate new-table with $2 \cdot size[T]$ slots
 insert all items in $table[T]$ into new-table
 free $table[T]$
 $table[T] \leftarrow$ new-table
 $size[T] \leftarrow 2 \cdot size[T]$
insert x into $table[T]$
$num[T] \leftarrow num[T] + 1$ \hspace{1cm} (Initially, $num[T] = size[T] = 0$)
Aggregate analysis

- Charge 1 per elementary insertion.
- Count only elementary insertions (other costs = constant).

\(c_i = \) actual cost of \(i^{th} \) operation
- If not full, \(c_i = 1 \).
- If full, have \(i-1 \) items in the table at the start of the \(i^{th} \) operation.
 Have to copy all \(i - 1 \) existing items, then insert \(i^{th} \) item \(\Rightarrow c_i = i \).

\(n \) operations \(\Rightarrow c_i = O(n) \Rightarrow O(n^2) \) time for \(n \) operations

\[
c_i = \begin{cases}
 i & \text{if } i-1 \text{ is power of 2} \\
 1 & \text{Otherwise}
\end{cases}
\]

Total cost = \(\sum_{i=1}^{n} c_i \leq n + \sum_{j=0}^{\lfloor \log n \rfloor} 2^j = n + \frac{2^{\lfloor \log n \rfloor + 1} - 1}{2 - 1} < n + 2n = 3n \)

Amortized cost per operation = 3.
Accounting method

Charge $3 per insertion of x.
- 1 pays for x’s insertion.
- 1 pays for x to be moved in the future.
- 1 pays for some other item to be moved.

Suppose we’ve just expanded, $size=m$ before next expansion, $size=2m$ after next expansion.
- Assume that the expansion used up all the credit, so that there’s no credit stored after the expansion.
- Will expand again after another m insertions.
- Each insertion will put 1 on one of the m items that were in the table just after expansion and will put 1 on the item inserted.
- Have $2m$ of credit by next expansion, when there are $2m$ items to move. Just enough to pay for the expansion...