COMP251: Divide-and-Conquer
(1)

Jérôme Waldispühl
School of Computer Science
McGill University

Based on (Kleinberg & Tardos, 2005) & slides from (Snoeyink, 2004)
Divide and Conquer

• Recursive in structure
 – *Divide* the problem into sub-problems that are similar to the original but smaller in size
 – *Conquer* the sub-problems by solving them recursively. If they are small enough, just solve them in a straightforward manner.
 – *Combine* the solutions to create a solution to the original problem
An Example: Merge Sort

Sorting Problem: Sort a sequence of n elements into non-decreasing order.

- **Divide:** Divide the n-element sequence to be sorted into two subsequences of $n/2$ elements each.
- **Conquer:** Sort the two subsequences recursively using merge sort.
- **Combine:** Merge the two sorted subsequences to produce the sorted answer.
Sorting problem

Problem. Given a list of n elements from a totally-ordered universe, rearrange them in ascending order.
Sorting applications

Obvious applications.
- Organize an MP3 library.
- Display Google PageRank results.
- List RSS news items in reverse chronological order.

Some problems become easier once elements are sorted.
- Identify statistical outliers.
- Binary search in a database.
- Remove duplicates in a mailing list.

Non-obvious applications.
- Convex hull.
- Closest pair of points.
- Interval scheduling / interval partitioning.
- Minimum spanning trees (Kruskal's algorithm).
- Scheduling to minimize maximum lateness or average completion time.
- ...

...
Merge Sort – Example

Original Sequence

Sorted Sequence
Merge-Sort (A, p, r)

INPUT: a sequence of n numbers stored in array A

OUTPUT: an ordered sequence of n numbers

```
MergeSort (A, p, r)  // sort A[p..r] by divide & conquer
1  if p < r
2    then q ← ⌊(p+r)/2⌋
3        MergeSort (A, p, q)
4        MergeSort (A, q+1, r)
5        Merge (A, p, q, r)  // merges A[p..q] with A[q+1..r]
```

Initial Call: MergeSort(A, 1, n)
Procedure Merge

```
Merge(A, p, q, r)
1  n_1 ← q – p + 1
2  n_2 ← r – q
3  for i ← 1 to n_1
4      do L[i] ← A[p + i – 1]
5  for j ← 1 to n_2
6      do R[j] ← A[q + j]
7  L[n_1+1] ← ∞
8  R[n_2+1] ← ∞
9  i ← 1
10  j ← 1
11  for k ← p to r
12      do if L[i] ≤ R[j]
13          then A[k] ← L[i]
14              i ← i + 1
15          else A[k] ← R[j]
16              j ← j + 1
```

Input: Array containing sorted subarrays $A[p..q]$ and $A[q+1..r]$.

Sentinels, to avoid having to check if either subarray is fully copied at each step.
Merge – Example

A

... 1 6 8 9 26 32 42 43 ...

k

L

6 8 26 32 ∞

i

R

1 9 42 43 ∞

j
Correctness of Merge

\[\text{Merge}(A, p, q, r) \]

1. \(n_1 \leftarrow q - p + 1 \)
2. \(n_2 \leftarrow r - q \)
3. \(\text{for } i \leftarrow 1 \text{ to } n_1 \) do \(L[i] \leftarrow A[p + i - 1] \)
4. \(\text{for } j \leftarrow 1 \text{ to } n_2 \) do \(R[j] \leftarrow A[q + j] \)
5. \(L[n_1 + 1] \leftarrow \infty \)
6. \(R[n_2 + 1] \leftarrow \infty \)
7. \(i \leftarrow 1 \)
8. \(j \leftarrow 1 \)
9. \(\text{for } k \leftarrow p \text{ to } r \) do if \(L[i] \leq R[j] \) then \(A[k] \leftarrow L[i] \)
10. \(i \leftarrow i + 1 \)
11. Else \(A[k] \leftarrow R[j] \)
12. \(j \leftarrow j + 1 \)

Loop Invariant for the for loop

At the start of each iteration of the for loop:

- Subarray \(A[p..k - 1] \) contains the \(k - p \) smallest elements of \(L \) and \(R \) in sorted order.
- \(L[i] \) and \(R[j] \) are the smallest elements of \(L \) and \(R \) that have not been copied back into \(A \).

Initialization:

Before the first iteration:
- \(A[p..k - 1] \) is empty.
- \(i = j = 1 \).
- \(L[1] \) and \(R[1] \) are the smallest elements of \(L \) and \(R \) not copied to \(A \).
Correctness of Merge

Maintenance:

Case 1: $L[i] \leq R[j]$

- By LI, A contains $p - k$ smallest elements of L and R in sorted order.
- By LI, $L[i]$ and $R[j]$ are the smallest elements of L and R not yet copied into A.
- Line 13 results in A containing $p - k + 1$ smallest elements (again in sorted order).
- Incrementing i and k reestablishes the LI for the next iteration.

Termination:

- On termination, $k = r + 1$.
- By LI, A contains $r - p + 1$ smallest elements of L and R in sorted order.
- L and R together contain $r - p + 3$ elements. All but the two sentinels have been copied back into A.

```
Merge(A, p, q, r)
1  n_1 ← q - p + 1
2  n_2 ← r - q
3  for i ← 1 to n_1
4    do L[i] ← A[p + i - 1]
5  for j ← 1 to n_2
6    do R[j] ← A[q + j]
7  L[n_1+1] ← ∞
8  R[n_2+1] ← ∞
9  i ← 1
10  j ← 1
11  for k ← p to r
12    do if L[i] ≤ R[j]
13      then A[k] ← L[i]
14        i ← i + 1
15      else A[k] ← R[j]
16        j ← j + 1
```
Analysis of Merge Sort

- Running time $T(n)$ of Merge Sort:
 - Divide: computing the middle takes $\Theta(1)$
 - Conquer: solving 2 subproblems takes $2T(n/2)$
 - Combine: merging n elements takes $\Theta(n)$

- Total:

 \[
 T(n) = \Theta(1) \quad \text{if } n = 1
 \]
 \[
 T(n) = 2T(n/2) + \Theta(n) \quad \text{if } n > 1
 \]

 $\Rightarrow T(n) = \Theta(n \log n)$
A useful recurrence relation

Def. $T(n) = \text{max number of compares to mergesort a list of size } \leq n.$

Note. $T(n)$ is monotone nondecreasing.

Mergesort recurrence.

$$T(n) \leq \begin{cases} 0 & \text{if } n = 1 \\ T([n/2]) + T([n/2]) + n & \text{otherwise} \end{cases}$$

Solution. $T(n)$ is $O(n \log_2 n)$.

Assorted proofs. We describe several ways to prove this recurrence. Initially we assume n is a power of 2 and replace \leq with $=.$
Proposition. If \(T(n) \) satisfies the following recurrence, then \(T(n) = n \log_2 n \).

\[
T(n) = \begin{cases}
0 & \text{if } n = 1 \\
2 T(n/2) + n & \text{otherwise}
\end{cases}
\]

Pf 1.

Assuming \(n \) is a power of 2.

\[
T(n) = n \log_2 n
\]
Proof by induction

Proposition. If \(T(n) \) satisfies the following recurrence, then \(T(n) = n \log_2 n \).

\[
T(n) = \begin{cases}
0 & \text{if } n = 1 \\
2 \ T(n / 2) + n & \text{otherwise}
\end{cases}
\]

Pf 2. [by induction on \(n \)]

- **Base case:** when \(n = 1 \), \(T(1) = 0 \).
- **Inductive hypothesis:** assume \(T(n) = n \log_2 n \).
- **Goal:** show that \(T(2n) = 2n \log_2 (2n) \).

\[
T(2n) = 2 \ T(n) + 2n \\
= 2n \log_2 n + 2n \\
= 2n (\log_2 (2n) - 1) + 2n \\
= 2n \log_2 (2n). \quad \blacksquare
\]
Analysis of mergesort recurrence

Claim. If $T(n)$ satisfies the following recurrence, then $T(n) \leq n \lceil \log_2 n \rceil$.

\[
T(n) \leq \begin{cases}
0 & \text{if } n = 1 \\
T([n/2]) + T([n/2]) + n & \text{otherwise}
\end{cases}
\]

Pf. [by strong induction on n]

- Base case: $n = 1$.
- Define $n_1 = \lfloor n/2 \rfloor$ and $n_2 = \lceil n/2 \rceil$.
- Induction step: assume true for $1, 2, \ldots, n-1$.

\[
T(n) \leq T(n_1) + T(n_2) + n \\
\leq n_1 \lceil \log_2 n_1 \rceil + n_2 \lceil \log_2 n_2 \rceil + n \\
\leq n_1 \lceil \log_2 n_2 \rceil + n_2 \lceil \log_2 n_2 \rceil + n \\
= n \lceil \log_2 n_2 \rceil + n \\
\leq n (\lceil \log_2 n \rceil - 1) + n \\
= n \lceil \log_2 n \rceil.
\]
Arithmetic operations

Given 2 (binary) numbers, we want efficient algorithms to:

• Add 2 numbers
• Multiply 2 numbers (here, we will use a divide-and-conquer method!)
Integer addition

Addition. Given two n-bit integers a and b, compute $a + b$.
Subtraction. Given two n-bit integers a and b, compute $a - b$.

Grade-school algorithm. $\Theta(n)$ bit operations.

Remark. Grade-school addition and subtraction algorithms are asymptotically optimal.
Integer multiplication

Multiplication. Given two \(n \)-bit integers \(a \) and \(b \), compute \(a \times b \).

Grade-school algorithm. \(\Theta(n^2) \) bit operations.

\[
\begin{array}{cccccccc}
1 & 1 & 0 & 1 & 0 & 1 & 0 & 1 \\
\times & 0 & 1 & 1 & 1 & 1 & 1 & 0 & 1 \\
\hline
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
1 & 1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 \\
1 & 1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 \\
1 & 1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 \\
1 & 1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 \\
1 & 1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 \\
1 & 1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline
0 & 1 & 1 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1
\end{array}
\]

Conjecture. [Kolmogorov 1952] Grade-school algorithm is optimal.

Theorem. [Karatsuba 1960] Conjecture is wrong.
Divide-and-conquer multiplication

To multiply two n-bit integers x and y:

- Divide x and y into low- and high-order bits.
- Multiply four $\frac{n}{2}$-bit integers, recursively.
- Add and shift to obtain result.

\[
m = \lfloor n / 2 \rfloor
\]

\[
a = \lfloor x / 2^m \rfloor \quad b = x \mod 2^m
\]

\[
c = \lfloor y / 2^m \rfloor \quad d = y \mod 2^m
\]

\[
(2^m a + b) (2^m c + d) = 2^{2m} ac + 2^m (bc + ad) + bd
\]

<table>
<thead>
<tr>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
</table>

Ex. $x = 10001101$ $y = 11100001$

\[
\begin{align*}
a & = 10001101 \\ b & = 10101011 \\ c & = 11100001 \\ d & = 01010101
\end{align*}
\]
Divide-and-conquer multiplication

\[\text{MULTIPLY}(x, y, n) \]

IF \((n = 1)\)

\[\text{RETURN } x \times y. \]

ELSE

\[m \leftarrow \left\lfloor \frac{n}{2} \right\rfloor. \]
\[a \leftarrow \left\lfloor \frac{x}{2^m} \right\rfloor; \quad b \leftarrow x \mod 2^m. \]
\[c \leftarrow \left\lfloor \frac{y}{2^m} \right\rfloor; \quad d \leftarrow y \mod 2^m. \]
\[e \leftarrow \text{MULTIPLY}(a, c, m). \]
\[f \leftarrow \text{MULTIPLY}(b, d, m). \]
\[g \leftarrow \text{MULTIPLY}(b, c, m). \]
\[h \leftarrow \text{MULTIPLY}(a, d, m). \]
\[\text{RETURN } 2^{2m} e + 2^m (g + h) + f. \]
Divide-and-conquer multiplication analysis

Proposition. The divide-and-conquer multiplication algorithm requires \(\Theta(n^2)\) bit operations to multiply two \(n\)-bit integers.

Pf. Apply case 1 of the master theorem to the recurrence:

\[
T(n) = 4T(n/2) + \Theta(n) \quad \Rightarrow \quad T(n) = \Theta(n^2)
\]
Karatsuba trick

To compute middle term $bc + ad$, use identity:

$$bc + ad = ac + bd - (a - b)(c - d)$$

$$m = \lfloor n / 2 \rfloor$$

$$a = \lfloor x / 2^m \rfloor \quad b = x \mod 2^m$$

$$c = \lfloor y / 2^m \rfloor \quad d = y \mod 2^m$$

$$(2^m a + b) (2^m c + d) = 2^{2m} ac + 2^m (bc + ad) + bd$$

$$= 2^{2m} ac + 2^m (ac + bd - (a - b)(c - d)) + bd$$

Bottom line. Only three multiplication of $n/2$-bit integers.
Karatsuba multiplication

\[
\text{KARATSUBA-MULTIPLY}(x, y, n)
\]

IF \((n = 1)\)

RETURN \(x \times y\).

ELSE

\(m \leftarrow \lfloor \frac{n}{2} \rfloor\).
\(a \leftarrow \lfloor \frac{x}{2^m} \rfloor; \quad b \leftarrow x \mod 2^m.\)
\(c \leftarrow \lfloor \frac{y}{2^m} \rfloor; \quad d \leftarrow y \mod 2^m.\)
\(e \leftarrow \text{KARATSUBA-MULTIPLY}(a, c, m).\)
\(f \leftarrow \text{KARATSUBA-MULTIPLY}(b, d, m).\)
\(g \leftarrow \text{KARATSUBA-MULTIPLY}(a - b, c - d, m).\)
RETURN \(2^m e + 2^m (e + f - g) + f.\)
Karatsuba analysis

Proposition. Karatsuba's algorithm requires $O(n^{1.585})$ bit operations to multiply two n-bit integers.

Pf. Apply case 1 of the master theorem to the recurrence:

$$T(n) = 3T(n/2) + \Theta(n) \quad \Rightarrow \quad T(n) = \Theta(n^{\lg 3}) = O(n^{1.585}).$$

Practice. Faster than grade-school algorithm for about 320-640 bits.

Next class!
Integer arithmetic reductions

Integer multiplication. Given two \(n \)-bit integers, compute their product.

<table>
<thead>
<tr>
<th>problem</th>
<th>arithmetic</th>
<th>running time</th>
</tr>
</thead>
<tbody>
<tr>
<td>integer multiplication</td>
<td>(a \times b)</td>
<td>(\Theta(M(n)))</td>
</tr>
<tr>
<td>integer division</td>
<td>(a / b, \ a \mod b)</td>
<td>(\Theta(M(n)))</td>
</tr>
<tr>
<td>integer square</td>
<td>(a^2)</td>
<td>(\Theta(M(n)))</td>
</tr>
<tr>
<td>integer square root</td>
<td>(\sqrt{a})</td>
<td>(\Theta(M(n)))</td>
</tr>
</tbody>
</table>

All integer arithmetic problems with the same complexity as integer multiplication.
History of asymptotic complexity of integer multiplication

<table>
<thead>
<tr>
<th>year</th>
<th>algorithm</th>
<th>order of growth</th>
</tr>
</thead>
<tbody>
<tr>
<td>?</td>
<td>brute force</td>
<td>$\Theta(n^2)$</td>
</tr>
<tr>
<td>1962</td>
<td>Karatsuba-Ofman</td>
<td>$\Theta(n^{1.585})$</td>
</tr>
<tr>
<td>1963</td>
<td>Toom-3, Toom-4</td>
<td>$\Theta(n^{1.465}), \Theta(n^{1.404})$</td>
</tr>
<tr>
<td>1966</td>
<td>Toom-Cook</td>
<td>$\Theta(n^{1+\varepsilon})$</td>
</tr>
<tr>
<td>1971</td>
<td>Schönhage–Strassen</td>
<td>$\Theta(n \log n \log \log n)$</td>
</tr>
<tr>
<td>2007</td>
<td>Fürer</td>
<td>$n \log n 2^{O(\log^*n)}$</td>
</tr>
<tr>
<td>?</td>
<td>?</td>
<td>$\Theta(n)$</td>
</tr>
</tbody>
</table>

number of bit operations to multiply two n–bit integers

used in Maple, Mathematica, gcc, cryptography, ...

Remark. GNU Multiple Precision Library uses one of five different algorithm depending on size of operands.