Network Flows

$G = (V, E)$ directed.
Each edge (u, v) has a capacity $c(u, v) \geq 0$.
If $(u, v) \not\in E$, then $c(u, v) = 0$.

Source vertex s, sink vertex t, assume $s \sim v \sim t$ for all $v \in V$.

Source has not incoming edges, and sink no outgoing edges!

Definitions

Positive flow: A function $p : V \times V \rightarrow \mathbb{R}$ satisfying.
Capacity constraint: For all $u, v \in V$, $0 \leq p(u, v) \leq c(u, v)$,

Flow conservation: For all $u \in V - \{s, t\}$, $\sum_{v \in V} p(u, v) = \sum_{v \in V} p(v, u)$

Example

Cancellation with positive flows

- Without loss of generality, can say positive flow goes either from u to v or from v to u, but not both.
- In the above example, we can "cancel" 1 unit of flow in each direction between x and z.
- Capacity constraint is still satisfied.
- Flow conservation is still satisfied.

Net flow

A function $f : V \times V \rightarrow \mathbb{R}$ satisfying:
- Capacity constraint: For all $u, v \in V$, $f(u, v) \leq c(u, v)$.
- Skew symmetry: For all $u, v \in V$, $f(u, v) = -f(v, u)$, $v \in V$
- Flow conservation: For all $u \in V - \{s, t\}$, $\sum_{v \in V} f(u, v) = 0$

$$\sum_{v \in V, f(v, u) > 0} f(v, u) = \sum_{v \in V, f(u, v) > 0} f(u, v)$$

Total positive flow entering u Total positive flow leaving u
Positive vs. Net flows

Define net flow in terms of positive flow:

\[f(u,v) = p(u,v) - p(v,u). \]

The differences between positive flow \(p \) and net flow \(f \):

- \(p(u,v) \geq 0 \)
- \(f \) satisfies skew symmetry.

Values of flows

Definition: \(f = |f| = \sum_{(x,y)} f(x,y) \) = total flow out of source.

Maximum-flow problem

Given \(G, s, t, \) and \(c \), find a flow whose value is maximum.

Algorithm 1

Initialize \(f = 0 \)
While true {
 if (there is a path \(P \) from \(s \) to \(t \) such that all edges on that path have a flow strictly less that their capacity)
 then
 increase the flow on that path as much as possible.
 else
 break
 }

Applications
Example where algorithm works

Example where algorithm works

Example where algorithm works

Example where algorithm works

Example where algorithm fail!

Example where algorithm fail!

|f| = 2

|f| = 4

|f| = 5

|f| = 3 And terminates...
Challenges

How to choose paths such that:

• We do not get stuck
• We guarantee to find the maximum flow
• The algorithm is efficient!

Algorithm 2

Motivation: If we could subtract flow, then we could find it.

Residual graphs

Given a flow network $G=(V,E)$ with edge capacities c and a given flow f, define the residual graph G_f as:

• G_f has the same vertices as G

• The edges E_f have capacities c_f (called residual capacities) that allow us to change the flow f, either by:
 1. Adding flow to an edge $e \in E$
 2. Subtracting flow from an edge $e \in E$

Residual graphs

For each edge $e = (u,v) \in E$

If $f(e) < c(e)$

then {

 put a forward edge (u,v) in E_f
 with residual capacity $c_f(e) = c(e) - f(e)$
}

If $f(e)=0$

then {

 put a backward edge (v,u) in E_f
 with residual capacity $c_f(e) = f(e)$
}

Example 1/3

Example 2/3
Augmenting path

An augmenting path is a path from the source s to the sink t in the residual graph G_f that allows us to increase the flow.

Q: By how much can we increase the flow using this path?
Methodology

- Compute the residual graph \(G_f \)
- Find a path \(P \)
- Augment the flow \(f \) along the path \(P \)
 1. Let \(\beta \) be the bottleneck (smallest residual capacity \(c_f(e) \) of edges on \(P \))
 2. Add \(\beta \) to the flow \(f(e) \) on each edge of \(P \).

Q: How should we add \(\beta \)?

Augmenting a path

\[
\text{augment}(P) \{
\begin{align*}
\beta &= \min \{ c(e) - f(e) \mid e \in P \} \\
\text{for each edge } e &= (u,v) \in P \{
\begin{align*}
\text{if } e \text{ is a forward edge } &:\ f(e) += \beta \\
\text{else } &:// e \text{ is a backward edge } \ f(e) -= \beta
\end{align*}
\}
\}
\}
\]

Ford-Fulkerson algorithm

\[
f = 0 \\
G_f = G \\
\text{while (there is a s-t path in } G_f) \{
\begin{align*}
f \text{.augment}(P) \\
\text{update } G_i \text{ based on new } f
\end{align*}
\}
\]

Correctness (termination)

Claim: The Ford-Fulkerson algorithm terminates.
Proof:
- The capacities and flows are strictly positive integers.
- The sum of capacities leaving \(s \) is finite.
- Bottleneck values \(\beta \) are strictly positive integers.
- The flow increase by \(\beta \) after each iteration of the loop.
- The flow is an increasing sequence of integers that is bounded.

Complexity (Running time)

- Let \(C = \sum_{e \in f} c(e) \)
- Finding a path from \(s \) to \(t \) takes \(O(|E|) \) (e.g. BFS or DFS).
- The flow increases by at least 1 at each iteration of the main while loop.
- The algorithm runs in \(O(C \cdot |E|) \)