COMP251: Bipartite graphs

Jérôme Waldispühl
School of Computer Science
McGill University

Based on slides from M. Langer (McGill) & P. Beame (UofW)

Bipartite graphs

Vertices are partitioned into 2 sets.
All edges cross the sets.

Examples

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
</tr>
</thead>
<tbody>
<tr>
<td>Women</td>
<td>Traditional marriage</td>
</tr>
<tr>
<td>Students</td>
<td>registration</td>
</tr>
<tr>
<td>People</td>
<td>employment</td>
</tr>
<tr>
<td>People</td>
<td>Have read/wen</td>
</tr>
<tr>
<td></td>
<td>Courses</td>
</tr>
<tr>
<td></td>
<td>Companies</td>
</tr>
<tr>
<td></td>
<td>Books/Movies</td>
</tr>
</tbody>
</table>

Examples

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Counter-examples

Easy to identify.
But not always...

Cycles

Claim: If a graph is bipartite if and only if does not contain an odd cycle.

Proof: Q5 of assignment 2.

Is it a bipartite graph?

Assuming $G=(V,E)$ is an undirected connected graph.

1. Run DFS and build a DFS tree.
2. Color vertices by layers (e.g., red & black)
3. If all non-tree edges join vertices of different color then the graph is bipartite.

Non-tree edges in DFS tree cross 2 or more levels. Why?
Bipartite matching
Consider an undirected bipartite graph.

A matching is a subset of the edges \(\{ (\alpha, \beta) \} \) such that no two edges share a vertex.

Perfect matching
Suppose we have a bipartite graph with \(n \) vertices in each A and B. A perfect matching is a matching that has \(n \) edges.

Note: It is not always possible to find a perfect matching.

Complete bipartite graph
A complete bipartite graph is a bipartite graph that has an edge for every pair of vertex \((\alpha, \beta) \) such that \(\alpha \in A, \beta \in B. \)

The algorithm of happiness

Resident matching program
- **Goal:** Given a set of preferences among hospitals and medical school students, design a self-reinforcing admissions process.
- **Unstable pair:** applicant \(x \) and hospital \(y \) are unstable if:
 - \(x \) prefers \(y \) to their assigned hospital.
 - \(y \) prefers \(x \) to one of its admitted students.
- **Stable assignment:** Assignment with no unstable pairs.
 - Natural and desirable condition.
 - Individual self-interest will prevent any applicant/hospital deal from being made.

Stable marriage problem
Goal: Given \(n \) men and \(n \) women, find a "suitable" matching. Participants rate members of opposite sex.
- Each man lists women in order of preference from best to worst.
- Each woman lists men in order of preference from best to worst.

<table>
<thead>
<tr>
<th>Men's preferences</th>
<th>Women's preferences</th>
</tr>
</thead>
<tbody>
<tr>
<td>1st</td>
<td>2nd</td>
</tr>
<tr>
<td>Xavier</td>
<td>Amy</td>
</tr>
<tr>
<td>Yuri</td>
<td>Brenda</td>
</tr>
</tbody>
</table>
Stable marriage problem

- **Perfect matching**: everyone is matched monogamously.
 - Each man gets exactly one woman.
 - Each woman gets exactly one man.

- **Stability**: no incentive for some pair of participants to undermine assignment by joint action.
 - In matching M, an unmatched pair $m-w$ is unstable if man m and woman w prefer each other to current partners.
 - Unstable pair $m-w$ could each improve by eloping.

- **Stable matching**: perfect matching with no unstable pairs.

- **Stable matching problem**: Given the preference lists of n men and n women, find a stable matching (if one exists).

Example

Q: Is $X-C$, $Y-B$, $Z-A$ a good assignment?

A: No! Brenda and Xavier will hook up...

![Graph showing unstable pair](image)

Example

Q: Is $X-A$, $Y-B$, $Z-C$ a good assignment?

A: Yes!

![Graph showing stable pair](image)

Stable marriage problem

Consider a complete bipartite graph such that $|A| = |B| = n$.

- Each member of A has a preference ordering of members of B.
- Each member of B has a preference ordering of members of A.

Algorithm for finding a matching:

- Each A member proposes to a B, in preference order.
- Each B member accepts the first proposal from an A, but then rejects that proposal if/when it receives a proposal from an A that it prefers more.

In our example: Men propose to women. Woman accept the first offer made to them, but women will drop their partner when/if a preferred man proposes to them.

Note the asymmetry between A and B.

Gale-Shapley algorithm

For each $a \in A$, let $\text{pref}[a]$ be the ordering of its preferences in B.
For each $b \in B$, let $\text{pref}[b]$ be the ordering of its preferences in A.
Let matching be a set of crossing edges between A and B.

```plaintext
matching ← ∅
while there is $a \in A$ not yet matched do
    $β ← \text{pref}[a].\text{removeFirst}()$
    if $β$ not yet matched then
        matching ← matching $∪$ $\{(a,β)\}$
    else
        $γ ← β$'s current match
        if $β$ prefers $a$ over $γ$ then
            matching ← matching $∪$ $\{(γ,β)\}$ $∪$ $\{(a,β)\}$
    end if
end while
return matching
```
<table>
<thead>
<tr>
<th>1st</th>
<th>2nd</th>
<th>3rd</th>
</tr>
</thead>
<tbody>
<tr>
<td>Xavier</td>
<td>Brenda</td>
<td>Amy</td>
</tr>
<tr>
<td>Yuri</td>
<td>Brenda</td>
<td>Claire</td>
</tr>
<tr>
<td>Zoran</td>
<td>Amy</td>
<td>Claire</td>
</tr>
</tbody>
</table>

Men's preferences

<table>
<thead>
<tr>
<th>1st</th>
<th>2nd</th>
<th>3rd</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amy</td>
<td>Zoran</td>
<td>Xavier</td>
</tr>
<tr>
<td>Yuri</td>
<td>Brenda</td>
<td>Claire</td>
</tr>
<tr>
<td>Zoran</td>
<td>Amy</td>
<td>Claire</td>
</tr>
</tbody>
</table>

Women's preferences
Correctness (termination)

Observations:
1. Men propose to women in decreasing order of preference.
2. Once a woman is matched, she never becomes unmatched; she only "trades up."

Claim: Algorithm terminates after at most \(n^2 \) iterations of while loop (i.e. \(O(n^2) \) running time).

Proof: Each time through the while loop a man proposes to a new woman. There are only \(n^2 \) possible proposals.

Correctness (perfection)

Claim: All men and women get matched.

Proof: (by contradiction)
- Suppose, for sake of contradiction, that Zoran is not matched upon termination of algorithm.
- Then some woman, say Amy, is not matched upon termination.
- By Observation 2 (only trading up, never becoming unmatched), Amy was never proposed to.
- But, Zoran proposes to everyone. Contradiction.

Correctness (stability)

Claim: No unstable pairs.

Proof: (by contradiction)
- Suppose A-Z is an unstable pair: each prefers each other to partner in Gale-Shapley matching.
 - Case 1: Z never proposed to A.
 \(\Rightarrow \) A prefers his GS partner to A.
 \(\Rightarrow \) A-Z is stable.
 - Case 2: Z proposed to A.
 \(\Rightarrow \) A rejected Z (right away or later)
 \(\Rightarrow \) A prefers her GS partner to Z.
 \(\Rightarrow \) A-Z is stable.
- In either case A-Z is stable. Contradiction.
Optimality

Definition: Man m is a valid partner of woman w if there exists some stable matching in which they are matched.

Man-optimal assignment: Each man receives best valid partner (according to his preferences).

Claim: All executions of GS yield a man-optimal assignment, which is a stable matching!

Man-Optimality

Claim: GS matching S^* is man-optimal.

Proof: (by contradiction)

- Suppose some man is paired with someone other than his best partner. Men propose in decreasing order of preference so some man is rejected by a valid partner.
- Let Y be first such man, and let A be the first valid woman that rejects him.
- Let S be a stable matching where A and Y are matched.
- In building $match1sg$, when Y is rejected, A forms (or reaffirms) engagement with a man, say Z, whom she prefers to Y.
- Let B be Z's partner in S.
- In building $match1sg$, Z is not rejected by any valid partner at the point when Y is rejected by A.
- Thus, Z prefers A to B.
- But A prefers Z to Y.
- Thus $A-Z$ is unstable in S.