
Comp 251: Assignment 1

Answers must be returned online by February 1st (11:59pm), 2017.

• Your solution must be returned electronically on MyCourse.
• Written answers and programming questions must be returned in two separate submission fold-

ers on MyCourse.
• The only format accepted for written answers are PDF or text files (i.e. .txt r .rtf). PDF files

must open on SOCS computers. Any additional files (e.g. images) must be included in the PDF.
• Do not submit a compressed repository with all your files. Upload instead each PDF or text file

individually.
• The solution of programming questions must be written in java. Your program should compile

and execute of SOCS computers. Java files that do not compile or execute properly on SOCS
computer will not be graded.
• To some extent, collaborations are allowed. These collaborations should not go as far as shar-

ing code or giving away the answer. You must indicate on your assignments the names of the
persons with who you collaborated or discussed your assignments (including members of the
course staff). If you did not collaborate with anyone, you write “No collaborators” at the be-
ginning of your document. If asked, you should be able to orally explain your solution to a
member of the course staff.
• Unless specified, all answers must be justified.
• When applicable, your pseudo-code should be commented and indented.
• The clarity and presentation of your answers is part of the grading. Be neat!
• Violation of all rules above may result in penalties or even absence of grading (Please, refer to

the course webpage for a full description of the policy).
• Partial answers will receive credits.
• The course staff will answer questions about the assignment during office hours or in the online

forum at https://osqa.cs.mcgill.ca/. We urge you to ask your questions as early
as possible. We cannot guarantee that questions asked less than 24h before the submission
deadline will be answered in time.

Exercise 1 (40 points) We wish to study the execution time of hashing with the division and multi-
plication methods we covered in class:

Division method : f(k) = k mod D
Multiplication method: g(k) = ((A · k) mod 2w) >> (w − r)

Where r and w are two integers s.t. w > r, and A is a random number s.t. 2w−1 < A < 2w.
Let n be the number of key to insert, and m the number of slots in the hash tables. We remind you

that the value α = n
m

is called the load factor. In the following, we set m = D = 2r.

1

We want to estimate the number of collisions with respect to the choice of values of w, r, and α.
More specifically, your task to write a java program that will take as input (i.e. in the java command
line) the values r and w (in this order), and where the values of α will vary from 0.2 to 4 with a step
of 0.2. The program will simulate the insertion of n keys and count the number of collision for each
method (i.e. division and multiplication).

We provide you a template file COMP251HW1.java that you will complete. In particular, this
file contains a function generateRandomNumberInRange(double min, double max)
that will enable you to generate random number within a specified range. We also provide you a jar
file JavaPlotBuilder.jar to visualize your results (you can run this file with the command line
java -jar JavaPlotBuilder.jar).

Your first task is to implement the two java methods divisionMethodImpl and
multiplicationMethodImpl in COMP251HW1.java. These methods will generate n ran-
dom keys in the range [0, 2w[and return the number of collisions. Note that the value of A must be
updated with w.

A typical command line to run this program will be java COMP251HW1 8 32, where r = 8
and w = 32. The output data will be stored in a csv file generated by the class COMP251HW1. You
will be able to visualize your data using the jar file JavaPlotBuilder.jar (run the command
line java -jar JavaPlotBuilder.jar and open the csv file with the GUI).

Your second task is to try several (well chosen) sets of values of w and r. Discuss the behaviour of
the hash functions with variation of the parameters w, r, and α. Use your results to decide (and justify
with your graphs) which method works best. You do not need to make many experiments. Here, we
simply ask you to make a reasonable choices for the variables w and r observe the behaviour of the
two methods with α, and discuss your results.

Exercise 2 (15 points) Show the execution of heapsort on A = 〈6, 4, 3, 5, 1, 2〉. Heaps must be
represented as arrays. Indicate the operation made on the heap for each step of the algorithm, and
show the full status of the array and variables.

Exercise 3 (15 points) We use a random hash function h to hash n distinct keys to an array T of size
m. Collisions are solved with chaining. What is the expected number of clashes? Write your results
using the big-oh notation and the load factor.

Exercise 4 (15 points) We implement binary trees with a dynamic data structure such that each node
x is represented by a object that has a field father[x] pointing to the father, left[x] pointing
to the left child, and right[x] to the right child. Let B be a binary tree and x one node of this tree.
Write the pseudo-code for the procedure RotateRight(B, x) (right rotation) we have seen in
class. This function will replace x by its left child, and place x at the root of the right subtree of the
new root of the rotated tree. The right subtree of the left child of x becomes the left subtree of x (See
the slides of the lectures on AVL trees).
Note: The node x can be any node of the tree. Your algorithm should handle all special cases (e.g. x
is a leaf). We remind you that your pseudo-code should be commented and fully indented.

Exercise 5 (15 points) Give a recurrence for the number of possible binary search trees with n keys.
You may assume the keys are 1, 2, · · · , n.
Hint: the root of the binary search tree can be any one of the n keys. You need to consider each of
these n possiblities.

2

