COMP 250: Practice Midterm

October 22th, 2015, 6:05pm — 7:25pm

This is a short answer exam. While the real exam will be multiple choice, this exam is intended
to prepare you for what may be expected from you on the real exam.

You have 80 minutes to write the exam.

This exam contains one page, and is out of 40 marks.

Java (3):
Write a java method that sorts an array using any method. List input, output, preconditions, and
post conditions.

Many solutions are possible

import java.util.Arrays;
public static void javaSort(array A)

{
}

PreCondition: Array A exists and is an array
PostCondition: Array A is sorted

Input: An array A

Output: A sorted array A

Arrays.sort(A);

Divide and Conquer (10):

Write an algorithm which sorts a set of n numbers using at most log(n!) + n number of
comparisons.

(You may use any operation that does not compare a pair of elements as many times as you wish)

Build a new list from the old one, and use binary search to place elements in the new list. This
would require a large amount operations pertaining to maintaining the array, but those are not
comparisons, so we need not worry about them.

Induction (6):
Given a set of n>2 distinct points on a 2 dimensional plane, show that it is always possible to draw
a polygon with n sides containing all points as vertices, such that no two sides intersect.

There is a small mistake in this question — an additional condition stating that all points cannot lie
on a single line is required. Thus, give yourself 6 out of 6 for this one.

The following is a sketch of the proof for those that are interested:

Base case: Triangles are possible

Induction hypothesis: Polygons are possible with n-1 points

Induction step: Draw a polygon with n-1 points. For the last point, break an edge off of the
polygon and tack the point there.

Landau Symbols (Big O notation) (12):
The notation o (read: small 0) can be interpreted to mean the following:

If £(n) = o(g(n)),




then f(n) = O(g(n)) but g(n) # O(f(n))

a) Find a function f(n) such that:

f(n) = o(n)
log(n) = o(f(n))

n”c, for any c<1 or log(n)"c, for any c>1

b) Find a function f(n) such that:

f(n) = o(n%), for any ¢>0

(log(n))* = o(f(n)), for any k>0

esqrt(ln(n))

c) Find a function f(n) that uses only the binary operations +

and n!/n = O(f(n)).

(Recall that [In(x)dx = x*In(x) + X)

n"/e"

Quicksort (8):

/7 log, such that f(n)=0(n*n!)

There exists an algorithm which can find the ki, element in a list in O(n) time, and suppose that it
is in place. Using this algorithm, write an in place sorting algorithm that runs in worst case time
O(n*log(n)), and prove that it does. Given that this algorithm exists, why is mergesort still used?

Use findKthElement(n/2) on each iteration of Quicksort to find the pivot, and you will discover
that the running time is O(nlog(n)). Though the big O is the same as mergesort, the constant will

be much larger.

ADTSs (1):

Complete the following table with optimal big O running times, given the data structure:

Array of size n

Linked list of size n

Get iy entry in list, where iis | O(1) O(n)
any number between 1 and n
Concatenate two lists O(n) 0(1)




