
COMP 250: Practice Midterm

October 22th, 2015, 6:05pm – 7:25pm

- This is a short answer exam. While the real exam will be multiple choice, this exam is intended

to prepare you for what may be expected from you on the real exam.

- You have 80 minutes to write the exam.

- This exam contains one page, and is out of 40 marks.

1. Java (3):

Write a java method that sorts an array using any method. List input, output, preconditions, and

post conditions.

Many solutions are possible

import java.util.Arrays;

public static void javaSort(array A)

{

 Arrays.sort(A);

}

PreCondition: Array A exists and is an array

PostCondition: Array A is sorted

Input: An array A

Output: A sorted array A

2. Divide and Conquer (10):

Write an algorithm which sorts a set of n numbers using at most log(n!) + n number of

comparisons.

(You may use any operation that does not compare a pair of elements as many times as you wish)

Build a new list from the old one, and use binary search to place elements in the new list. This

would require a large amount operations pertaining to maintaining the array, but those are not

comparisons, so we need not worry about them.

3. Induction (6):

Given a set of n>2 distinct points on a 2 dimensional plane, show that it is always possible to draw

a polygon with n sides containing all points as vertices, such that no two sides intersect.

There is a small mistake in this question – an additional condition stating that all points cannot lie

on a single line is required. Thus, give yourself 6 out of 6 for this one.

The following is a sketch of the proof for those that are interested:

Base case: Triangles are possible

Induction hypothesis: Polygons are possible with n-1 points

Induction step: Draw a polygon with n-1 points. For the last point, break an edge off of the

polygon and tack the point there.

4. Landau Symbols (Big O notation) (12):
The notation o (read: small o) can be interpreted to mean the following:

If f(n) = o(g(n)),

then f(n) = O(g(n)) but g(n) ≠ O(f(n))

a) Find a function f(n) such that:

f(n) = o(n)

log(n) = o(f(n))

n^c, for any c<1 or log(n)^c, for any c>1

b) Find a function f(n) such that:

f(n) = o(nc), for any c>0

(log(n))k = o(f(n)), for any k>0

esqrt(ln(n))

c) Find a function f(n) that uses only the binary operations +,-,*,/,^,log, such that f(n)=O(n*n!)

and n!/n = O(f(n)).

(Recall that ∫ln(x)dx = x*ln(x) + x)

nn/en

5. Quicksort (8):

There exists an algorithm which can find the kth element in a list in O(n) time, and suppose that it

is in place. Using this algorithm, write an in place sorting algorithm that runs in worst case time

O(n*log(n)), and prove that it does. Given that this algorithm exists, why is mergesort still used?

Use findKthElement(n/2) on each iteration of Quicksort to find the pivot, and you will discover

that the running time is O(nlog(n)). Though the big O is the same as mergesort, the constant will

be much larger.

6. ADTs (1):

Complete the following table with optimal big O running times, given the data structure:

 Array of size n Linked list of size n

Get ith entry in list, where i is

any number between 1 and n

O(1) O(n)

Concatenate two lists O(n) O(1)

