1. **Java (3):**
 Write a java method that sorts an array using any method. List input, output, preconditions, and post conditions.

2. **Divide and Conquer (10):**
 Write an algorithm which sorts a set of n numbers using at most \(\log(n!) + n \) number of comparisons.
 (You may use any operation that does not compare a pair of elements as many times as you wish)

3. **Induction (6):**
 Given a set of \(n \geq 2 \) distinct points on a 2 dimensional plane, show that it is always possible to draw a polygon with \(n \) sides containing all points as vertices, such that no two sides intersect.
 (Assume that all points lie on a single line)

4. **Landau Symbols (Big O notation) (12):**
 The notation \(o \) (read: small o) can be interpreted to mean the following:
 If \(f(n) = o(g(n)) \),
 then \(f(n) = O(g(n)) \) but \(g(n) \neq O(f(n)) \)

 a) Find a function \(f(n) \) such that:
 \(f(n) = o(n) \)
 \(\log(n) = o(f(n)) \)

 b) Find a function \(f(n) \) such that:
 \(f(n) = o(n^c) \), for any \(c > 0 \)
 \((\log(n))^k = o(f(n)) \), for any \(k > 0 \)

 c) Find a function \(f(n) \) that uses only the binary operations +, -, *, /, ^, log, such that \(f(n) = O(n^*n!) \)
 and \(n! / n = O(f(n)) \).
 *(Recall that \(\int_{ln(x)} dx - x * ln(x) - x \)*)

5. **Quicksort (8):**
 There exists an algorithm which can find the \(k_{th} \) element in a list in \(O(n) \) time, and suppose that it is in place. Using this algorithm, write an in place sorting algorithm that runs in worst case time \(O(n^*\log(n)) \), and prove that it does. Given that this algorithm exists, why is mergesort still used?

6. **ADTs (1):**
 Complete the following table with **optimal** big O running times, given the data structure:

<table>
<thead>
<tr>
<th></th>
<th>Array of size n</th>
<th>Linked list of size n</th>
</tr>
</thead>
<tbody>
<tr>
<td>Get (i_{th}) entry in list, where (i) is any number between 1 and n</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Concatenate two lists</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>