COMP250: Loop invariants

Jérôme Waldispühl
School of Computer Science
McGill University

Based on (CRLS, 2009) & slides from (Sora, 2015)
Algorithm specification

• An algorithm is described by:
 – Input data
 – Output data
 – **Preconditions**: specifies restrictions on input data
 – **Postconditions**: specifies what is the result

• Example: Binary Search
 – Input data: \(a: \text{array of integer}; \ x: \text{integer}; \)
 – Output data: \(\text{index}: \text{integer}; \)
 – Precondition: \(a \) is sorted in ascending order
 – Postcondition: index of \(x \) if \(x \) is in \(a \), and -1 otherwise.
Correctness of an algorithm

An algorithm is correct if:

– for any correct input data:
 • it stops and
 • it produces correct output.

– Correct input data: satisfies precondition
– Correct output data: satisfies postcondition

Problem: Proving the correctness of an algorithm may be complicated when the latter is repetitive or contains loop instructions.
A loop invariant is a loop property that holds before and after each iteration of a loop.
Proof using loop invariants

We must show:

1. **Initialization**: It is true prior to the first iteration of the loop.
2. **Maintenance**: If it is true before an iteration of the loop, it remains true before the next iteration.
3. **Termination**: When the loop terminates, the invariant gives us a useful property that helps show that the algorithm is correct.
Analogy to induction proofs

Using loop invariants is like mathematical induction.

• You prove a **base case** and an **inductive step**.

• Showing that the invariant holds before the first iteration is like the base case.

• Showing that the invariant holds from iteration to iteration is like the inductive step.

• The **termination** part differs from classical mathematical induction. Here, we stop the "induction" when the loop terminates instead of using it infinitely.

We can show the three parts in any order.
Insertion sort

for i ← 1 to length(A) - 1
 j ← i
 while j > 0 and A[j-1] > A[j]
 swap A[j] and A[j-1]
 j ← j - 1
 end while
end for

(Seen in Lecture 7)
Insertion sort

n elements already sorted

New element to sort

$n+1$ elements sorted
Loop invariant

The array $A[0...i-1]$ is fully sorted.
Initialization

Just before the first iteration \((i = 1)\), the sub-array \(A[0 \ldots i-1]\) is the single element \(A[0]\), which is the element originally in \(A[0]\), and it is trivially sorted.

\[
\begin{array}{cccccc}
1 & 3 & 5 & 6 & 2 & 4 \\
\end{array}
\]

\(i=1\)
Note: To be precise, we would need to state and prove a loop invariant for the ```inner''` while loop.
Termination

The outer for loop ends when $i \geq length(A)$ and increment by 1 at each iteration starting from 1.

Therefore, $i = length(A)$.

Plugging $length(A)$ in for $i-1$ in the loop invariant, the subarray $A[0 \ldots length(A)-1]$ consists of the elements originally in $A[0 \ldots length(A)-1]$ but in sorted order.

$A[0 \ldots length(A)-1]$ contains $length(A)$ elements (i.e. all initial elements!) and no element is duplicated/deleted.

In other words, the entire array is sorted!
Merge Sort

\[
\text{MERGE-SORT}(A, p, r)
\]

\[
\text{if } p < r
\]

\[
q = \frac{p + r}{2}
\]

\[
\text{MERGE-SORT}(A, p, q)
\]

\[
\text{MERGE-SORT}(A, q+1, r)
\]

\[
\text{MERGE}(A, p, q, r)
\]

Precondition:

Array A has at least 1 element between indexes p and r (p<r)

Postcondition:

The elements between indexes p and r are sorted
Merge Sort (combine)

- MERGE-SORT calls a function MERGE(A,p,q,r) to merge the sorted subarrays of A into a single sorted one
- The proof of MERGE can be done separately, using loop invariants
- We assume here that MERGE has been proved to fulfill its postconditions (Exercise!)

MERGE (A,p,q,r)

Precondition: A is an array and p, q, and r are indices into the array such that p <= q < r. The subarrays A[p..q] and A[q+1..r] are sorted

Postcondition: The subarray A[p..r] is sorted
Correctness proof for Merge-Sort

• Recursive property: Elements in A[p,r] are be sorted.

• **Base Case:** $n = 1$
 – A contains a single element (which is trivially “sorted”)

• **Inductive Hypothesis:**
 – Assume that MergeSort correctly sorts $n=1, 2, \ldots, k$ elements

• **Inductive Step:**
 – Show that MergeSort correctly sorts $n = k + 1$ elements.

• **Termination Step:**
 – MergeSort terminate and all elements are sorted.
Maintenance

- **Inductive Hypothesis:**
 - Assume MergeSort correctly sorts \(n=1, \ldots, k \) elements

- **Inductive Step:**
 - Show that MergeSort correctly sorts \(n = k + 1 \) elements.

- **Proof:**
 - First recursive call \(n_1 = q-p+1 = (k+1)/2 \leq k \)
 => subarray \(A[p \ldots q] \) is sorted
 - Second recursive call \(n_2 = r-q = (k+1)/2 \leq k \)
 => subarray \(A[q+1 \ldots r] \) is sorted
 - \(A, p, q, r \) fulfill now the precondition of Merge
 - The post-condition of Merge guarantees that the array \(A[p \ldots r] \) is sorted => post-condition of MergeSort satisfied.
Termination

We have to find a quantity that decreases with every recursive call: the length of the subarray of A to be sorted MergeSort.

At each recursive call of MergeSort, the length of the subarray is strictly decreasing.

When MergeSort is called on a array of size \(\leq 1 \) (i.e. the base case), the algorithm terminates without making additional recursive calls.

Calling MergeSort(A,0,n) returns a fully sorted array.