COMP250: Thinking Recursively. Examples.

Jérôme Waldispühl
School of Computer Science
McGill University

Based on slides from (Hatami), (Bailey), (Stepp & Martin)
Course credits

c(x) = total number of credits required to complete course x

c(COMP462) = ?

= 3 credits + \#credits for prerequisites

COMP462 has 2 prerequisites: COMP251 & MATH323

= 3 credits + c(COMP251) + c(MATH323)

The function c calls itself twice

c(COMP251) = ? c(MATH323) = ?

c(COMP251) = 3 credits + c(COMP250) COMP250 is a prerequisite

Substitute c(COMP251) into the formula:

c(COMP462) = 3 credits + 3 credits + c(COMP250) + c(MATH323)

c(COMP462) = 6 credits + c(COMP250) + c(MATH323)
Course credits

c(\text{COMP462}) = 6 \text{ credits} + c(\text{COMP250}) + c(\text{MATH323})

\begin{align*}
c(\text{COMP250}) &= ? \\
c(\text{MATH323}) &= ?
\end{align*}

c(\text{COMP250}) = 3 \text{ credits} \text{ no prerequisite}

c(\text{COMP462}) = 6 \text{ credits} + 3 \text{ credits} + c(\text{MATH323})

\begin{align*}
c(\text{MATH323}) &= ?
\end{align*}

c(\text{MATH323}) = 3 \text{ credits} + c(\text{MATH141})

c(\text{COMP462}) = 9 \text{ credits} + 3 \text{ credits} + c(\text{MATH141})

\begin{align*}
c(\text{MATH141}) &= ?
\end{align*}

c(\text{MATH141}) = 4 \text{ credits} \text{ no prerequisite}

c(\text{COMP462}) = 12 \text{ credits} + 4 \text{ credits} = 16 \text{ credits}
Recursive definition

A noun phrase is either
• a noun, or
• an adjective followed by a noun phrase

<noun phrase> → <noun> OR <adjecQve> <noun phrase>

Diagram:
```
<noun phrase>
  /      \<noun phrase>
 /        \ /        \<adjecQve>      <adjecQve>
/          /          /     \<noun phrase>
big        black    <noun>
dog
```
Definitions

Recursive definition: A definition that is defined in terms of itself.

Recursive method: A method that calls itself (directly or indirectly).

Recursive programming: Writing methods that call themselves to solve problems recursively.
Why using recursions?

• "cultural experience" - A different way of thinking of problems
• Can solve some kinds of problems better than iteration
• Leads to elegant, simplistic, short code (when used well)
• Many programming languages ("functional" languages such as Scheme, ML, and Haskell) use recursion exclusively (no loops)
• Recursion is often a good alternative to iteration (loops).
Iterative algorithms

Definition: Algorithm where a problem is solved by iterating (going step-by-step) through a set of commands, often using loops

Algorithm: power(a,n)
Input: non-negative integers a, n
Output: a^n
Product ← 1
for i = 1 to n do
 product ← product * a
Return product

<table>
<thead>
<tr>
<th>i</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>product</td>
<td>1</td>
<td>a</td>
<td>a * a = a²</td>
<td>a² * a = a³</td>
<td>a³ * a = a⁴</td>
</tr>
</tbody>
</table>
Recursive algorithms

Definition: algorithm is recursive if in the process of solving the problem, it calls itself one or more times.

Algorithm: power(a,n)
Input: non-negative integers a, n
Output: a^n
if (n=0) then
 return 1
else
 return a * power(a,n-1)
Example

\[
\text{power}(7, 4) \quad \text{calls}
\]
\[
\rightarrow \text{power}(7, 3) \quad \text{calls}
\]
\[
\rightarrow \text{power}(7, 2) \quad \text{calls}
\]
\[
\rightarrow \text{power}(7, 1) \quad \text{calls}
\]
\[
\rightarrow \text{power}(7, 0) \quad \text{return} \quad 1
\]
\[
\text{returns} \quad 7 \times 1 = 7
\]
\[
\text{returns} \quad 7 \times 7 = 49
\]
\[
\text{returns} \quad 7 \times 49 = 343
\]
\[
\text{returns} \quad 7 \times 343 = 2041
\]
Algorithm structure

Every recursive algorithm involves at least 2 cases:

base case: A simple occurrence that can be answered directly.

recursive case: A more complex occurrence of the problem that cannot be directly answered, but can instead be described in terms of smaller occurrences of the same problem.

Some recursive algorithms have more than one base or recursive case, but all have at least one of each.

A crucial part of recursive programming is identifying these cases.
Binary Search

Algorithm binarySearch(array, start, stop, key)
Input: - A sorted array
 - the region start...stop (inclusively) to be searched
 - the key to be found
Output: returns the index at which the key k has been found, or
-1 if it is not in array[start...stop].

Example: Does the following array contains the number 6?

<p>| | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>3</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>9</td>
<td>9</td>
</tr>
</tbody>
</table>
Binary search example

1 1 3 5 6 7 9 9

Search [0:7]

5 < 6 ⇒ look into right half of the array

1 1 3 5 6 7 9 9

Search [4:7]

7 > 6 ⇒ look into left half of the array

1 1 3 5 6 7 9 9

Search [4:4]

6 is found. Return 4 (index)
Binary Search Algorithm

```c
int bsearch(int[] A, int i, int j, int x) {
    int e = (i+j) % 2;  // Find middle point
    if (A[e] > x) {  // key is bigger, look to left half
        return bsearch(A,i,e-1,x);
    } else if (A[e] < x) {  // key is lower, look to right half
        return bsearch(A,e+1,j,x);
    } else {  // value x is found
        return e;
    }
}
```

Is it correct?
Binary Search Algorithm

```c
int bsearch(int[] A, int i, int j, int x) {
    if (i<j) {
        int e = [(i+j)/2];
        if (A[e] > x) {
            return bsearch(A,i,e-1);
        } else if (A[e] < x) {
            return bsearch(A,e+1,j);
        } else {
            return e;
        }
    } else { return -1; }  // value not found
}
```
Fibonacci numbers

\[\text{Fib}_0 = 0 \quad \text{base case} \]
\[\text{Fib}_1 = 1 \quad \text{base case} \]
\[\text{Fib}_n = \text{Fib}_{n-1} + \text{Fib}_{n-2} \quad \text{for } n > 1 \quad \text{recursive case} \]

<table>
<thead>
<tr>
<th>i</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fib(_i)</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>5</td>
<td>8</td>
<td>13</td>
</tr>
</tbody>
</table>
Recursive algorithm

// = Fibonacci number n (for n >= 0)
public static int Fib(int n) {
 if (n <= 1) {
 return n; // can handle both base cases together
 }
 // {n > 0}
 return Fib(n-1) + Fib(n-2); // recursive case (2 recursive calls)
}

Note: The algorithm follows almost exactly the definition of Fibonacci numbers.
Recursion is not always efficient!

Fib(5)
 / /
Fib(4) Fib(3)
 / \
Fib(3) Fib(2) Fib(2)
 / \
Fib(2) Fib(1) Fib(1)
 / \
Fib(1) Fib(0) Fib(0)

Question: When computing Fib(n), how many times are F(0) or F(1) called?