COMP250: Hash tables

Lecture 22
Jérôme Waldispühl
School of Computer Science
McGill University
Dictionary ADT

• Reminder: A dictionary stores pairs (key, information)

• Operations:
 – find(key k)
 – insert(key k, info i)
 – remove(key k)

• Binary Search Trees implement all these operations in time $O(h)$, where h is the height of the tree, which is $O(\log n)$ if we maintain the tree balanced.

• We can sometimes do better...
Hash tables

Suppose keys are integers between 0 and K-1.
Suppose keys are integers between 0 and K-1
Then, use an array A[0...K-1] containing elements of type "info" to store the dictionary:
 – insert(key k, info i): A[k] = i;
 – remove(key k): A[k] = null;
 – find(key k): return A[k];
Running time: All operations are O(1)
It's a miracle! Except that...
Problems with direct array implementation

• If K is large, the array will be very big
 – For McGill student ID, K = 1 000 000 000

• The amount of memory needed (K) is essentially independent of the number of items in the dictionary.

• Idea: compress the array...
Hash functions

Idea: Map the K possible keys to N integers, with N being much smaller than K

Hash function \(f: [0...K-1] \rightarrow [0...N-1] \)

Space of keys: 0 1 2 \ldots \ldots \ldots \ldots \ldots K-1

Hash function

Hashed key 0 1 2 \ldots \ldots \ldots \ldots \ldots N-1

insert(key k, info i): \(A[f(k)] = i; \)
remove(key k): \(A[f(k)] = \text{null}; \)
find(key k): return \(A[f(k)]; \)
Collisions

• Collisions! Many keys map to the same index

• Solution: Each element of the array is itself a dictionary (called a bucket), implemented with linked-list, binary search tree, or even a hash table!
Example

\[f(x) = x \mod 10 \]
Resolving collision with chaining

insert(key k, info i): \[A[f(k)].insert(k,i); \]
remove(key k, info i): \[A[f(k)].remove(k); \]
find(key k): \[return A[f(k)].find(k); \]
Analysis of Hashing with Chaining

Insertion: $O(1)$ time.

Deletion: Search time + $O(1)$ (if we use a double linked list).

Search:

Search time = compute hash function + search the list.

We assume that the time to compute hash function is $O(1)$.

Worst time for searching happens when all keys go the same slot. We need to scan the full list => $O(n)$.

Worst case running time of search to is $O(n)$.
Importance of good hash functions

• Worst case complexity :
 – if all keys end up in the same bucket and we use a linked-list to store buckets??
 – if keys are evenly spread among the N buckets??

• We want a hash function that spreads the keys evenly among the buckets.
Examples of hash functions

Key: k = student ID #
Size of the hash table: N = 100

- \(f(\text{key } k) = \lfloor k/10\,000\,000 \rfloor \) = first 2 digits
- \(f(\text{key } k) = k \mod 100 \) = last 2 digits
- \(f(\text{key } k) = (\text{sum of digits of } k) \mod 100 \)
Good hash functions

- Choice of hash function depends on application
- In general, \(f(k) = k \mod N \) is good choice when \(N \) is a prime number
- Example: For student IDs, choose \(N = 101 \)
 - \(f(k) = k \mod 101 \)
- What if the key is not an integer (e.g. a String)?
 - map key to integer first with some function \(g(key) \)
 - use \(f() \) to map the integer to \([0...N-1]\)
Hash functions on Strings

We need a function g: String \rightarrow Integers that minimizes collisions

- Linear code:

 $g(\text{key } k) =$ sum of ASCII values of each char.

 Problem?

- Polynomial code: Choose a small prime number a.
 If key $k = k_0 k_1 k_2 ... k_e$, choose

 $g(k) = k_0 + k_1 a + k_2 a^2 + ... + k_e a^e$