Priority queue ADT
Heaps

Lecture 21

Priority queue ADT

Like a dictionary, a priority queue stores a set of
pairs (key, info)

The rank of an object depends on its priority (key)

Rear of Front of
qucuc queue
key: 986 5
Allows only access to
— Object findMin() //returns info of smallest key
— Object removeMin() // removes smallest key

— void insert(key k, info i) // inserts pair

Applications: customers in line, Data compression,
Graph searching, Artificial intelligence...

Outline

Priority queues

Heaps

Operations on heaps

Array-based implementation of heaps

HeapSort

Priority queue ADT

(4104) (51 OS) (8108)

D insert(9,0,)

(4104) (5/ 05) (8108) (9109)

D remove()
(5,0:) | (8,0 | (9,0)

> insert(6,0)
(5,0.) | (6,0, | (8,0, | (9,0,)

> insert(2,0,)

(21 02) (5/ OS) (6106) (8108) (9109)

Implementation of priority

gqueue
Unsorted array of pairs (key, info)
findMin(): Need to scan array O(n)
insert(key, info): Put new object at the end O(1)
removeMin(): First, findMin, then shift array O(n)

Sorted array of pairs (key, info)

findMin(): Return first element O(1)

insert(key, info):
Use binary-search to find position of insertion. O(log n)
Then shift array to make space. O(n)

Implementation of priority queue

Using a sorted doubly-linked list of pairs (key, info)
findMin(): Return first element O(1)
insert(key, info):

First, find location of insertion.

Binary Search?

No. Too slow on linked list.

Instead, we scan an array O(n)

Then insertion is easy O(1)

removeMin(): Remove first element of list O(1)

Heap data structure

e A heap is a data structure that implements
a priority queue:
— findMin(): O(1)
— removeMin(): O(log n)
— insert(key, info): O(log n)

e A heap is based on a binary tree, but with a
different property than a binary search tree

e heap # binary search tree

Heap - Definition

e A heap is a binary tree such that: e

— For any node n other than the root, e e

key(n) = key(parent(n)) ° e
000

— Let h be the height of the heap L ast node
e First h-1 levels are full:
Fori=0,...,h-1, there are 2' nodes of depth i

e At depth h, the leaves are packed on the left side of the
tree

Heap - Example

® (®)©)[1) —

Last node

Height of a heap

What is the maximum number of nodes that fits in a heap of
height h? h

§ : 2k _ 2h+1 1

k=0

What is the minimum number?

R"-1)+1=2"

Thus, the height of a heap with n nodes is:

| log(n)]

Heaps: findMin()

The minimum key is always at
the root of the heap!

Heaps: Insert

Insert(key k, info i). Two steps:

1. Find the left-most unoccupied
node and insert (k,i) there e
temporarily.

2. Restore the heap-order e @
property (see next) e @

¢
Last node

Heaps: Bubbling-up

Restoring the heap-order property:

— Keep swapping new node with its parent as long as its
key is smaller than its parent’s key

0 o
OfBe Joflc
T W0 ¢ e O BE

#
Last node Last node Last node

Running time? O(h)=0(og(n))

Insert pseudocode

Algorithm insert(key k, info 1)
Input: Key k and info 1 to add to the heap
Output: (k,i) is added

lastNode < nextAvailableNode(lastNode)
lastNode.key < Kk,

lastNode.info < 1

n < lastnode

while (n.getParent()!=null and
n.getParent().key > k) do

swap (n.getParent(), n)

Heaps: RemoveMin()

e The minimum key is always 0
at the root of the heap!

e Replace the root with last node e o

o G LT

E H Last node

4
Last node

e Restore heap-order property (see next)

Heaps: Bubbling-down

Restoring the heap-order property:

— Keep swapping the node with its smallest child as
long as the node’s key is larger than its child’s key

O 2, 2,
OSROENo SROEAOSRO
ORONENGEORENGH o

4 4
Last node Last node Last node

Running time? O(h)=0(log(n))

removeMin pseudocode

Algorithm removeMin()

Input: The heap
Output: A new heap where the node at the top of the
input heap has been removed.

swap(lastNode, root)
Update lastNode
n < root
while (n.key > min(n.getLeftChild() .key,
n.getRightChild().key)) do
if (n.getLeftChild().key < n.getRightChild() .key)

then
swap(n, n.getLeftChild)

else swap(n, n.getRightChild)

Array representation of heaps

e A heap with n keys can be stored in an array of
length n+1:

0 1 2 3 4 5 6 7 8 9 10 e
- |l2|5|6|7]10/8|9|8]|9]12 e e
e For anode atindexi, e ,. e
— The parent (if any) is at index |i/2]
— The left child is at index 2*i @@

Last node
— The right child is at index 2*i + 1

e |astNode is the first empty cell of the array. To
update it, either add or subtract one

Heaps as arrays

26124120118 117[19|13 12|14 |11 | Max-heap as an
1 2 3 4 5 6 7 8 9 array.

Map from array elements to
tree nodes and vice versa

* Root - A[l]

o Left[i] — A[2i]

o Right[i] — A[2i+1]

o Parent[i] — A[|i/2]]

HeapSort

Algorithm heapSort(array A[0..n-1])
Heap h < new Heap()
for 1=0 to n-1 do
h.insert(A[1])
for 1=0 to n-1 do

A[1] < h.removeMin()

Running time: O(n log n) in worst-case
Easy to do in-place: Just use the array A to store the heap

Note: We can optimize the construction of the heap (See
COMP251)

Supplement

Implementating nextAvailableNode

NextAvailableNode - Example

Finding nextAvailableNode

nextAvailableNode(lastNode) finds the location where the next
node should be inserted. It runs in time O(n).

n = lastNode;
while (n==(n.parent).rightChild && n.parent!=null) do
n = n.parent
if (n.parent == null) then
return left child of the leftmost node of tree
else
n = n.parent // go up one more level
if (n has no right child) then
return (right child of n)
else
n = n.rightChild // go to right child
while (n has a left child) do
n = n.leftChild
return (left child of n)

