
Priority	queue	ADT	
Heaps	

Lecture	21	

Priority	queue	ADT	
•  Like	a	dic9onary,	a	priority	queue	stores	a	set	of	
pairs	(key,	info)	

•  The	rank	of	an	object	depends	on	its	priority	(key)	

•  Allows	only	access	to		
–  Object	findMin()																			//returns	info	of	smallest	key	
–  Object	removeMin()													//	removes	smallest	key	
–  void	insert(key	k,	info	i)							//	inserts	pair	

•  Applica9ons:	customers	in	line,	Data	compression,	
Graph	searching,	Ar9ficial	intelligence…	

	

Front of
queue

Rear of
queue

key: 9 8 6 5 4 2

Outline	

•  Priority	queues	
•  Heaps	
•  Opera9ons	on	heaps	
•  Array-based	implementa9on	of	heaps	
•  HeapSort	

Priority queue ADT

(4,O4)	 (5,	O5)	 (8,O8)	

(4,O4)	 (5,	O5)	 (8,O8)	 (9,O9)	

(5,	O5)	 (8,O8)	 (9,O9)	

(5,	O5)	 (6,O6)	 (8,O8)	 (9,O9)	

(2,	O2)	 (5,	O5)	 (6,O6)	 (8,O8)	 (9,O9)	
insert(2,O2)

insert(6,O6)

remove()

insert(9,O9)

Implementa9on	of	priority	
queue	

Unsorted	array	of	pairs	(key,	info)	

	findMin():		

	insert(key,	info):	

	removeMin():	

Sorted	array	of	pairs	(key,	info)	

	findMin():		

	insert(key,	info):	
Use	binary-search	to	find	posi9on	of	inser9on. 	O(log	n)	
Then	shiY	array	to	make	space. 	 	 	O(n)	

Need	to	scan	array 																																	O(n)	

Put	new	object	at	the	end														O(1)	

First,	findMin,	then	shiY	array												O(n)	

Return	first	element																																				O(1)	

Using	a	sorted	doubly-linked	list	of	pairs	(key,	info)	

findMin():	Return	first	element	 	 	 	O(1)	

insert(key,	info):	

					First,	find	loca9on	of	inser9on.		

	Binary	Search?	

	No.	Too	slow	on	linked	list.	

	Instead,	we	scan	an	array 									 	 	 	O(n)	

	Then	inser9on	is	easy 	 	 	 	O(1)	

	removeMin():	Remove	first	element	of	list 	O(1)	

Implementa9on	of	priority	queue	

Heap	data	structure	

•  A	heap	is	a	data	structure	that	implements	
a	priority	queue:	
–  findMin():													O(1)	
–  removeMin():							O(log	n)	
–  insert(key,	info):			O(log	n)	

•  A	heap	is	based	on	a	binary	tree,	but	with	a	
different	property	than	a	binary	search	tree	

•  heap	≠	binary	search	tree	

Heap	-	Defini9on	

•  A	heap	is	a	binary	tree	such	that:	

–  For	any	node	n	other	than	the	root,		
	key(n)	≥	key(parent(n))	

–  Let	h	be	the	height	of	the	heap	
• First	h-1	levels	are	full:	
	For	i	=	0,…,h-1,	there	are	2i	nodes	of	depth	i	

• At	depth	h,	the	leaves	are	packed	on	the	leY	side	of	the	
tree	

Heap	-	Example	

0	

1	

2	

3	

Height of a heap
What	is	the	maximum	number	of	nodes	that	fits	in	a	heap	of	
height	h?	

What	is	the	minimum	number?	

Thus,	the	height	of	a	heap	with	n	nodes	is:	

 log(n)!" #$

2k
k=0

h

∑ = 2h+1 −1

(2h −1)+1= 2h

Heaps:	findMin()	

The	minimum	key	is	always	at	
the	root	of	the	heap!	

Heaps:	Insert	

Insert(key	k,	info	i).	Two	steps:	

1.  Find	the	leY-most	unoccupied	
node	and	insert	(k,i)	there	
temporarily.	

2.  Restore	the	heap-order		
	property	(see	next)	

Heaps:	Bubbling-up	
Restoring	the	heap-order	property:	

–  Keep	swapping	new	node	with	its	parent	as	long	as	its	
key	is	smaller	than	its	parent’s	key	

Running	9me?	 Ο(h) =Ο(log(n))

Insert	pseudocode	
Algorithm insert(key k, info i)
Input: Key k and info i to add to the heap
Output: (k,i) is added

lastNode ← nextAvailableNode(lastNode)
lastNode.key ← k,
lastNode.info ← i
n ← lastnode
while (n.getParent()!=null and

n.getParent().key > k) do
swap (n.getParent(), n)

Heaps:	RemoveMin()	

•  The	minimum	key	is	always	 	 	 	 		
at	the	root	of	the	heap!	

•  Replace	the	root	with	last	node	

•  Restore	heap-order	property	(see	next)	

Heaps:	Bubbling-down	

Restoring	the	heap-order	property:	
–  Keep	swapping	the	node	with	its	smallest	child	as	

long	as	the	node’s	key	is	larger	than	its	child’s	key	

Running	9me?	 Ο(h) =Ο(log(n))

removeMin	pseudocode	
Algorithm removeMin()
Input: The heap
Output: A new heap where the node at the top of the

input heap has been removed.

swap(lastNode, root)
Update lastNode
n ← root
while (n.key > min(n.getLeftChild().key,

 n.getRightChild().key)) do
if (n.getLeftChild().key < n.getRightChild().key)
then

swap(n, n.getLeftChild)
else swap(n, n.getRightChild)

Array	representa9on	of	heaps	
•  A	heap	with	n	keys	can	be	stored	in	an	array	of	
length	n+1:	
		

•  For	a	node	at	index	i,	
–  The	parent	(if	any)	is	at	index	⎣i/2⎦	
–  The	leY	child	is	at	index	2*i	
–  The	right	child	is	at	index	2*i	+	1	

•  lastNode	is	the	first	empty	cell	of	the	array.	To	
update	it,	either	add	or	subtract	one	

0	 1	 2	 3	 4	 5	 6	 7	 8	 9	 10	

-	 2	 5	 6	 7	 10	 8	 9	 8	 9	 12	

Heaps	as	arrays		
26 24 20 18 17 19 13 12 14 11
 1 2 3 4 5 6 7 8 9
10

Max-heap as an
array.

26

24 20

18 17 19 13

12 14 11

Map from array elements to
tree nodes and vice versa

•  Root – A[1]
•  Left[i] – A[2i]
•  Right[i] – A[2i+1]
•  Parent[i] – A[⎣i/2⎦]

1

2 3

4 5 6 7

8 9 1
0

HeapSort	
Algorithm heapSort(array A[0…n-1])
Heap h ← new Heap()
for i=0 to n-1 do
h.insert(A[i])

for i=0 to n-1 do
A[i] ← h.removeMin()

Running time: O(n log n) in worst-case
Easy to do in-place: Just use the array A to store the heap
Note: We can optimize the construction of the heap (See

COMP251)

Supplement	

Implementa9ng	nextAvailableNode	

NextAvailableNode	-	Example	

Finding	nextAvailableNode	
nextAvailableNode(lastNode)	finds	the	loca9on	where	the	next	
node	should	be	inserted.	It	runs	in	9me	O(n).	

n = lastNode;
while (n==(n.parent).rightChild && n.parent!=null) do

n = n.parent
if (n.parent == null) then

return left child of the leftmost node of tree
else

n = n.parent // go up one more level
if (n has no right child) then

return (right child of n)
else

n = n.rightChild // go to right child
while (n has a left child) do

n = n.leftChild
return (left child of n)

