COMP250: Dictionary ADT
& Binary Search Trees

Lecture 21
Jerome Waldispuhl
School of Computer Science

McGill University

Dictionary ADT

e Adictionary (a.k.a. map) stores a set of pairs
(key, value)
— (word, definition)
— (studentID, studentRecord)
— (flightNumber, flightiInformation)

e Datais accessed only through key:
— Object find(key k)
— void insert(key k, Object v)
— Object remove(key k)
e |f the keys can be ordered
— Object previous(key k)
— Object next(key k)

Dictionary ADT

Dictionary vehicle = {

‘car’:’a road vehicle, typically with
four wheels, powered by an internal
combustion engine and able to carry a small
number of people.’;

‘bicyle’:’a vehicle composed of two
wheels held in a frame one behind the other,
propelled by pedals and steered with
handlebars attached to the front wheel.’

}

Array implementation

Key Value

Key 1 Content 1

Key 2 Content 2

Key 3 Content 3

Key 4 Content 4
@ @

Size =4

Array implementation

Array of pairs (key, value)
e find(key k) : scan array to find key O(n)
e insert(key k, Object v): O(1)

— Add the pair (k, v) at the end of the array
— Increase size by one

e remove(key k)
— Scan array to find k
— Shift left remaining elements

O(n)

Array implementation

Remove(‘Key 2') Key Value
l Key 1 Content 1

Content 3

Content 4

Sorted Array implementation

Key Value

4
7
8

12

15

16

21

33

42

53

55

62

X (X [X | X |[X [X | X | X [X [X | X [X

Sorted array implementation

Array of pairs (key, value), sorted by key
e find(key k) : binary search to find key O(log n)
e insert(key k, Object v):
— Binary search to find where to insert, O(log n)
— Shift element right to insert new element, O(n)
e remove(key k) O(n)
— Binary search to find key, O(log n)
— Shift left remaining elements, O(n)

O(n)

Remove in a sorted Array

Key Value

Remove(‘12’) 4 X
7 X

8 X

:lj

—

Find: O(log n)
+
Remove: O(n)

X [X [X | X | X [X | X |X

Linked-list implementation

Keyl

Valuel

Key2

Value2

Key3

Value3

Linked-list implementation

Linked-list where each node contain a pair (key, value)

e find(key k) : scan list to find key O(n)

e insert(key k, Object v): O(1)
— Add the pair (k, v) at the end of the list

e remove(key k) O(n)

— Scan list to find k, O(n)
— Remove node, O(1)

Note: Keeping the linked-list sorted does not help, as binary
search can’ t be done in time O(log n) in linked lists. Why?

Implementations of dictionary

Method find insert remove
Array O(n) O(1) O(n)
Linked-list O(n) O(1) O(n)

Sorted array O(logn) [O(n) O(n)

BST - Definition

A binary search tree (BST) is a binary
tree such that for any node n,

 The elements of the left subtree of (3) (9)

n have values smaller or equal to n

e The elements of the right subtree of (6) (8) (9)
n have values larger of equal to n

(In the figure, we show only the keys)

find(‘8’)

BST - Find

Idea: 1) Start from the root of the tree
2) Choose if you should go to the left or right child.
3) Repeat until you find the key sought or get to a leaf.

Algorithm find(node n, key k)

Input: The node n at the root of the tree to explore.
The key k to find

Output: Returns one node with key equal to k

if (n = null) then return null

if (n.key = k) then return n

if (n.key > k) then return find(n.leftChild, k)
if (n.key < k) then return find(n.rightChild, k)

Can you write a non-recursive version of this algorithm?

insert(2’)

BST - insert

Idea: 1) Find the leaf where the insertion will take place,
by going down the tree as for the “find” algo.
2) Add a new left or right child to that leaf

Algorithm insert(node n, key k, object v)

Input: The key k and information i to be added to
the subtree rooted at n. Assumes n!= null

Output: Inserts a new node (k,1) in the subtree
rooted at n

if (k = n.key) then

if (n.leftChild != null) then
insert(n.leftChild, k, v)

else n.setLeftChild(new node(k,v));
else

if (n.rightChild != null) then
insert(n.rightChild, k, v)

else n.setRightChild(new node(k,v));

BST - remove

ldea: 1) Find the node N to be removed using the “find” algo
2) - If N is a leaf, simply remove it
- If N is an internal node with only one child,
replace N by its child
- If N is an internal node with two children, N will be
replaced by the node N’ that has the next key largest
key after N.
To find N”:
1) Follow the right child of N and then go down
left children until no left child is found.
The node found is N’
Overwrite N by N .

remove(‘6’) e

§b &

remove(‘8’)

remove(‘3’) e

W O

§b &

Implementation

// A small utility function

Algorithm replace(node x, node y)

Input: Two nodes x and y

Output: Copies node y onto node x, overwriting Xx.
if (x.parent != null)

if (x.parent.leftChild = x) then
Xx.parent.setLeftChild(y)

else x.parent.setRightChild(y)
if (y != null) then y.parent < x.parent

Algorithm remove(node root, key k)

Input: The key k of the node to be removed from the
subtree rooted at n

Output: Removes node with key k and returns it.

node x < find(root, k)

if (x=null) then return null // key k was not found
if (x.isALeaf()) then replace(x, null); return

if (x.leftChild = null or x.rightChild = null)
then // x has only one child

if (x.leftChild = null) then

replace(x, x.rightChild) // x was right child
else if (x.rightChild = null)

replace(x, x.leftChild) // x was left child
else // x has two children, find successor of x

suc < x.rightChild
while (suc.leftChild != null) do

suc < suc.leftChild

X.value = suc.value

X.key = suc.key

replace(suc, suc.rightChild)

