
Language Modelling: Smoothing and

Model Complexity

COMP-550

Sept 19, 2017

Announcements
A1 has been released!

• Due on Friday, September 29th, 11:59pm

Submit on MyCourses

• Q1 and Q2: theory/written

• Q3: programming + short report

• You can scan in your solutions to Q2

2

Outline
Review of last class

Justification of MLE probabilistically

Overfitting and unseen data

Dealing with unseen data: smoothing and
regularization

3

Language Modelling
Predict the next word given some context

Mary had a little _____

• lamb GOOD

• accident GOOD?

• very BAD

• up BAD

4

N-grams
Make a conditional independence assumption to make
the job of learning the probability distribution easier.

• Context = the previous N-1 words

Common choices: N is between 1 and 3

Unigram model
𝑃 𝑤𝑁 𝐶 = 𝑃(𝑤𝑁)

Bigram model
𝑃 𝑤𝑁 𝐶 = 𝑃(𝑤𝑁|𝑤𝑁−1)

Trigram model
𝑃 𝑤𝑁 𝐶 = 𝑃(𝑤𝑁|𝑤𝑁−1, 𝑤𝑁−2)

5

Deriving Parameters from Counts
Simplest method: count N-gram frequencies, then
divide by the total count

e.g.,

Unigram: P(cats) = Count(cats) / Count(all words in corpus)

Bigram: P(cats | the) = Count(the cats) / Count(the)

Trigram: P(cats | feed the) = ?

These are the maximum likelihood estimates (MLE).

6

Cross Entropy
Entropy is the minimum number of bits needed to
communicate some message, if we know what
probability distribution the message is drawn from.

Cross entropy is for when we don’t know.

e.g., language is drawn from some true distribution, the
language model we train is an approximation of it

𝐻 𝑝, 𝑞 = − 𝑖=1
𝑘 𝑝𝑖 log2 𝑞𝑖

p: “true” distribution

q: model distribution

7

Estimating Cross Entropy
When evaluating our LM, we assume the test data is a
good representative of language drawn from p.

Original:

𝐻 𝑝, 𝑞 = − 𝑖=1
𝑘 𝑝𝑖 log2 𝑞𝑖

Estimate:

𝐻(𝑝, 𝑞) = −
1

𝑁
log2 𝑞(𝑤1 …𝑤𝑁)

8

True language
distribution, which
we don’t have
access to.

Language model
under evaluation

Size of test corpus
in number of tokens

The words in the
test corpus

Perplexity
Cross entropy gives us a number in bits, which is
sometimes hard to read. Perplexity makes this easier.

Perplexity(𝑝, 𝑞) = 2𝐻 𝑝,𝑞

9

Warm-Up Exercise
Evaluate the given unigram language models using
perplexity:

A B C B B

Model 1 Model 2

P(A) = 0.3 P(A) = 0.4

P(B) = 0.4 P(B) = 0.5

P(C) = 0.3 P(C) = 0.1

Perplexity(𝑝, 𝑞) = 2𝐻 𝑝,𝑞

𝐻(𝑝, 𝑞) = −
1

𝑁
log2 𝑞(𝑤1 …𝑤𝑁)

10

What is Maximum Likelihood?
This way of computing the model parameters
corresponds to maximizing the likelihood of (i.e., the
probability of generating) the training corpus.

Assumption: words (or N-grams) are random variables
that are drawn from a categorical probability
distribution i.i.d. (independently, and identically
distributed)

11

Categorical Random Variables
1-of-K discrete outcomes, each with some probability

e.g., coin flip, die roll, draw a word from a language model

Probability of a training corpus, 𝐶 = 𝑥1, 𝑥2, … 𝑥𝑁 :

K = 2: 𝑃 𝐶; 𝜃 = 𝑛=1
𝑁 𝑃 𝑥𝑛; 𝜃

= 𝜃𝑁1 1 − 𝜃 𝑁0

Can similarly extend for K > 2

Notes:

• When K=2, it is called a Bernoulli distribution

• Sometimes incorrectly called a multinomial distribution,
which is something else

12

Maximizing Quantities
Calculus to the rescue!

Take derivative and set to 0.

Trick: maximize the log likelihood instead (math works
out better)

13

MLE Derivation for a Bernoulli
Maximize the log likelihood:

log 𝑃 𝐶; 𝜃 = log(𝜃𝑁1 1 − 𝜃 𝑁0)

= 𝑁1 log 𝜃 + 𝑁0 log(1 − 𝜃)
𝑑

𝑑𝜃
log 𝑃 𝐶; 𝜃 =

𝑁1

𝜃
−

𝑁0

1 −𝜃
= 0

𝑁1

𝜃
=

𝑁0

1 − 𝜃
Solve this to get:

𝜃 =
𝑁1

𝑁0 + 𝑁1

Or,

𝜃 =
𝑁1

𝑁

14

MLE Derivation for a Categorical
The above generalizes to the case where K > 2.

Do the derivation!

Parameters are now 𝜃0, 𝜃1, 𝜃2, … , 𝜃𝐾−1

Counts are now 𝑁0, 𝑁1, 𝑁2, … , 𝑁𝐾−1

Note: Need to add a constraint that 𝑖=0
𝐾−1𝜃𝑖 = 1 to ensure

that the parameters specify a probability distribution.

Use the method of Lagrange multipliers

15

Steps
1. Gather a large, representative training corpus

2. Learn the parameters from the corpus to build the
model

3. Once the model is fixed, use the model to evaluate
on testing data

16

Overfitting
MLE often gives us a model that is too good of a fit to
the training data. This is called overfitting.

• Words that we haven’t seen

• The probabilities of the words and N-grams that we have
seen are not representative of the true distribution.

But when testing, we evaluate the LM on unseen data.
Overfitting lowers performance.

17

Out Of Vocabulary (OOV) Items
Suppose we train a LM on the WSJ corpus, which is
about economic news in 1987 – 1989. What probability
would be assigned to Brexit?

In general, we know that there will be many words in
the test data that are not in the training data, no
matter how large the training corpus is.

• Neologisms, typos, parts of the text in foreign languages,
etc.

• Remember Zipf’s law and the long tail

18

Explicitly Modelling OOV Items
During training:

• Pick some frequency threshold

• All vocabulary items that occur less frequently are
replaced by an <UNK>

• Now, treat <UNK> as another vocabulary item

During testing:

• Any unseen words are called <UNK>

19

Smoothing
Training corpus does not have all the words

• Add a special <UNK> symbol for unknown words

Estimates for infrequent words are unreliable

• Modify our probability distributions

Smoothe the probability distributions to shift
probability mass to cases that we haven’t seen before
or are unsure about

20

MAP Estimation
Smoothing means we are no longer doing MLE. We
now have some prior belief about what the parameters
should be like: maximum a posteriori inference

MLE:

Find 𝜃𝑀𝐿𝐸 s.t. 𝑃(𝑋; 𝜃𝑀𝐿𝐸) is maximized

MAP:

Find 𝜃𝑀𝐴𝑃 s.t. 𝑃 𝑋; 𝜃𝑀𝐴𝑃 𝑃(𝜃𝑀𝐴𝑃) is maximized

21

Add-𝛿 Smoothing
Modify our estimates by adding a certain amount to
the frequency of each word. (sometimes called
pseudocounts)

e.g., unigram model

𝑃(𝑤) =
Count(𝑤) + 𝛿

|𝐿𝑒𝑥𝑖𝑐𝑜𝑛| ∗ 𝛿 + |𝐶𝑜𝑟𝑝𝑢𝑠|

Pros: simple

Cons: not the best approach; how to pick 𝛿? Depends on
sizes of lexicon and corpus

When 𝛿 = 1, this is called Laplace discounting

22

Exercise
Suppose we have a LM with a vocabulary of 20,000
items.

In the training corpus, we see donkey 10 times.

• Of these, in 5 times it was followed by the word kong.

• In the other 5 times, it was followed by another word.

What is the MLE estimate of P(kong|donkey)?

What is the Laplace estimate of P(kong|donkey)?

23

Interpolation
In an N-gram model, as N increases, data sparsity (i.e.,
unseen or rarely seen events) becomes a bigger
problem.

In an interpolation, use a lower N to mitigate the
problem.

24

Simple Interpolation
e.g., combine trigram, bigram, unigram models

 𝑃 𝑤𝑡 𝑤𝑡−2, 𝑤𝑡−1 = 𝜆1𝑃
𝑀𝐿𝐸 𝑤𝑡 𝑤𝑡−2, 𝑤𝑡−1

+𝜆2𝑃
𝑀𝐿𝐸 𝑤𝑡 𝑤𝑡−1

+𝜆3𝑃
𝑀𝐿𝐸(𝑤𝑡)

Need to set 𝑖 𝜆𝑖 = 1 so that the overall sum is a probability
distribution

How to select 𝜆𝑖? We will see shortly…

25

Good-Turing Smoothing
A more sophisticated method of modelling unseen
events (usually N-grams)

Remember Zipf’s lessons

• We shouldn’t adjust all words/N-grams uniformly.

• The frequency of a word or N-gram is related to its rank—
we should be able to model this!

• Unseen N-grams should behave a lot like N-gramss that
only occur once in a corpus

• N-grams that occur a lot should behave like other N-grams
that occur a lot.

26

Count of Counts
Let’s build a histogram to count how many events occur
a certain number of times in the corpus.

• For some event in bin 𝑓𝑐 , that event occurred c times in
the corpus; c is the numerator in the MLE.

• Idea: re-estimate c using 𝑓𝑐+1

27

Event frequency # events with that frequency

1 𝑓1 = 3993

2 𝑓2 = 1292

3 𝑓3 = 664

… …

Good-Turing Smoothing Defined
Let 𝑁 be total number of observed event-tokens, 𝑤𝑐be
an event that occurs 𝑐 times in the training corpus.

𝑁 = 𝑖 𝑓𝑖 × 𝑖 𝑃(𝑈𝑁𝐾) = 𝑓1 / 𝑁

Then: 𝑐∗ =
𝑐+1 𝑓𝑐+1

𝑓𝑐
𝑃 𝑤𝑐 = 𝑐∗/ 𝑁

Example:

Let N be 100,000.

28

Word frequency # word-types

1 𝑓1 = 3,993

2 𝑓2 = 1,292

3 𝑓3 = 664

… …

P(UNK) = 3993 / 100000
= 0.03993
(for all unseen events)
(Note: total number of
unseen events can be
calculated for a given
vocabulary)

𝑐1
∗ = 2 * 1292 / 3993

= 0.647
𝑐2
∗ = 3 * 664 / 1292

= 1.542

Note that this is for
all unseen events

Note that this is for
one event that occurs
c times

Good-Turing Refinement
In practice, we need to do something a little more:

At higher values of 𝑐, 𝑓𝑐+1 is often 0.

Solution: Estimate 𝑓𝑐 as a function of 𝑐

• We’ll assume that a linear relationship exists between
log 𝑐 and log 𝑓𝑐

• Use linear regression to learn this relationship:

log 𝑓𝑐
𝐿𝑅 = a log 𝑐 + b

• For lower values of 𝑐, we continue to use 𝑓𝑐; for higher
values of 𝑐 , we use our new estimate 𝑓𝑐

𝐿𝑅.

29

Exercises
Suppose we have the following counts:

Give the MLE and Good-Turing estimates for the
probabilities of:

• any unknown word

• soccer

• camp

30

Word ship pass camp frock soccer mother tops

Freq 5 3 2 2 1 1 1

Model Selection
We now have very many slightly different versions of
the model (with different hyperparameters). How to
decide between them?

Use a development / validation set

Procedure:

1. Train one or more models on the training set

2. Test (repeatedly, if necessary) on the dev/val set; choose
a final hyperparameter setting/model

3. Test the final model on the final testing set (once only)

Steps 1 and 2 can be structured using cross-validation

31

Model Complexity Trade-Offs
In general, there is a trade-off between:

• model expressivity; i.e., what trends you could capture
about your data with your model

• how well it generalizes to data

If you use a highly expressive model (e.g., high values of
N in N-gram modelling), it is much easier to overfit, and
you need to do smoothing. OTOH, if your model is too
weak, your performance will suffer as well.

32

