Machine Translation 2

COMP-550 Nov 23, 2017

Outline

IBM Model 1IBM Model 2Phrase-based MTMT DecodingRecent Developments

Statistical Machine Translation

Let's look at a popular direct-transfer approach to statistical machine translation: the **noisy channel model**.

$$\begin{array}{c} \text{English} \\ P(E) \end{array} \xrightarrow{P(F|E)} \end{array} \text{Russian}$$

When I look at an article in Russian, I say: 'This is really written in English, but it has been coded in some strange symbols. I will now proceed to decode.' Warren Weaver, 1955

IBM Model 1

IBM developed a series of five influential models that make increasingly powerful assumptions.

Model 1 is the most basic:

- Each source word is aligned to zero or one target word
- Don't try to model different **distortions** of word order (e.g., completely flipping word order vs. just swapping the orders of one or two words)
- Don't try to model likelihood of **fertility** (some phrases, e.g., *take a walk*, might be translated as one unit)

Word Alignment

E = target sentence

F = source sentence

- NULL node allows words in F to align to nothing in E.
- Since each source word is aligned to zero or one target word, |A| = |F|.
- Can represent A as indices: {1, 2, 4, 0, 9, 5, 6, 10, 13, 12}

Word Alignment Probabilities

 $P(F|E) = \sum_{A} P(F,A|E) = \sum_{A} P(F|E,A) \times P(A|E)$

Probability of source sentence, given the target sentence, and knowing which words are aligned with which.

Probability of the alignment, given the target sentence.

P(A|E)

IBM Model 1 makes a very strong simplifying assumption:

- Uniform probability of translation length (i.e., length of A)
- Uniform probability for each possible alignment $P(A|E) \propto C$

or

$$P(A|E) = \frac{\epsilon}{(I+1)^J}$$

, where I is the number of target words, J is the number of source words, ϵ is there to make sure things normalize across different possible values of J.

Why the + 1?

P(F|E,A)

Decompose this into individual word alignments

$$P(F|E,A) = \prod_{j=1}^{J} t(f_j|e_{a_j})$$

How do we learn $t(f_j | e_{a_j})$?

- If we had observed word alignments in the training corpus, we could simply do MLE: $t(f|e) = \frac{\text{Count}(f,e)}{\text{Count}(e)}$
- We don't, so it's time for ...?

Expectation-Maximization

- 1. Initialize the parameters t(f|e) randomly
- 2. Iterate for a while:
 - **E-step**: Given the current parameters, compute the expected value of Count(*f*, *e*) over the training data
 - **M-step**: Given the current Count(f, e), compute the new MLE $\theta_k = t(f|e)$

Probability of Alignments

To get the expected counts, what we really need is the probability of an alignment: P(A|E,F) $P(A|E,F) = \frac{P(A,E,F)}{P(E)P(F|E)} = \frac{P(F,A|E)}{P(F|E)} = \frac{P(F,A|E)}{\sum_{A} P(F,A|E)}$

Since $P(F,A|E) = P(F|E,A) \times P(A|E)$, and P(A|E) is the same for all alignments, we get:

$$P(A|E,F) = \frac{P(F|E,A)}{\sum_{A} P(F|E,A)}$$

Recall that $P(F|E, A) = \prod_{j=1}^{J} t(f_j|e_{a_j}).$

Thus, we're set, given some initial model of t(f|e).

Example

Let's do one round of EM training for the following mini-corpus:

red house	the house
maison rouge	la maison

Initialize the model t(f|e) uniformly:

$$t(maison|red) = \frac{1}{3} \qquad t(rouge|red) = \frac{1}{3} \qquad t(la|red) = \frac{1}{3}$$
$$t(maison|house) = \frac{1}{3} \qquad t(rouge|house) = \frac{1}{3} \qquad t(la|house) = \frac{1}{3}$$
$$t(maison|the) = \frac{1}{3} \qquad t(rouge|the) = \frac{1}{3} \qquad t(la|the) = \frac{1}{3}$$

Do the second round of EM training.

Details, Details

In practice, don't initialize t(f|e) uniformly:

- Given reasonable sizes of lexicon, too many parameters = too much memory and computation!
- Rather, restrict it to word pairs e', f', where e' and f' occur is some aligned sentence pair in the training set.
- When sentence lengths are high, need to efficiently compute probabilities of all possible alignments.
 - Can adapt our algorithm to implicitly sum over all alignments

IBM Model 2

Does not assume that all possible alignment structures are equiprobable.

• For many language pairs, alignment should proceed without much crossing:

And the programme has been implemented.

Le programme a été mis en application.

Can also draw alignment as a table.

IBM Model 2

- t(f|e) as before; the probability of source word f given target word e
- q(j|i, l, m) **distortion** probability that $a_i = j$, given length of F = m and length of E = l.

Recall that in Model 1, $P(A|E) = \frac{\epsilon}{(I+1)^J}$

Now:

$$P(A|E) = \epsilon \prod_{i=1}^{m} q(a_i|i, l, m)$$
$$P(A|E, m) = \prod_{i=1}^{m} q(a_i|i, l, m) , \text{ for a given m}$$

Exercise

Given the following sentence pair:

And the programme has been implemented.

Le programme a été mis en application.

Write down A, then the expression for P(F, A | E, m) in terms of factors t(...) and q(...).

$$P(F|E,A) = \prod_{j=1}^{J} t(f_j|e_{a_j})$$
$$P(A|E,m) = \prod_{i=1}^{m} q(a_i|i,l,m)$$

Parameter Estimation in IBM Model 2

In MLE:

$$t(f|e) = \frac{\text{Count}(f,e)}{\text{Count}(e)}$$
$$q(j|i,l,m) = \frac{\text{Count}(j,i,l,m)}{\text{Count}(i,l,m)}$$

For EM, need probability of a specific edge in the alignment $\delta_k(i, j)$ of aligning the *i*th word of *F* to the *j*th word of *E* in sample *k*:

$$\delta_k(i,j) = \frac{q(j|i,l_k,m_k)t(f_i^k|e_j^k)}{\sum_{j'=0}^{l_k} q(j'|i,l_k,m_k)t(f_i^k|e_{j'}^k)}$$

Further Notes

Each iteration of EM increases training corpus likelihood.

EM on IBM Model 2 may converge on local optima; *different initializations lead to different solutions*.

- So, need a good initialization
- Trick: initialize with the result of running IBM Model 1

Extensions

Higher IBM models

Model 3: model **fertility**—how many words are used to translate a word

HMM alignment

Cast computation of P(F, A|E) as an HMM sequence labelling problem

Use this to prefer alignments that are close to diagonal (works for some language pairs like English-French, English-Spanish)

Phrase-Based SMT

What about dealing with phrases that are better translated as a unit?

соир	blow
foudre	lightning
coup de foudre	love at first sight

Non-constituents also benefit:

Spass am fun with the

Phrase-based, rather than word-based SMT can solve this problem by adding a little more context. Need to learn **phrase table**

A Model of Phrase-based MT

1. Split sentence into phrases

 $E = e_1 e_2 \dots e_I = e p_1 e p_2 \dots e p_N$

- 2. Translate each phrase with **phrase translation probability** P(fp|ep)
- 3. Rearrange phrases with some **reordering probability** d(dist)
 - e.g., penalty for changing position

$$P(F|E) = \prod_{n} P(fp_{n}|ep_{n})d(dist_{n})$$

Learning a Phrase Table

- 1. Start with word alignment
 - e.g., use an IBM model
- 2. Extract phrase pairs
- 3. Score phrase pairs

Word Alignment

Example drawn from Koehn, (2009), Ch. 5

Extracting Phrase Pairs

extract phrase pair consistent with word alignment: assumes that / geht davon aus , dass

Note Consistency Constraints

All words of the phrase pair have to align to each other.

Scoring Phrase Translations

Relatively simple affair:

$$P(fp|ep) = \frac{\text{Count}(fp, ep)}{\sum_{fp'} \text{Count}(fp', ep)}$$

MT Decoding

We still need a **decoding algorithm** to *search* for the best possible translation predicted by a given model.

Many search algorithms can be used:

- A* search
- Greedy hill-climbing
- Beam search

• • •

Let's briefly describe a greedy hill-climbing method (Germann et al., 2001)

Greedy Hill-Climbing

Start by creating one complete candidate translation

• e.g., translate each word separately $e^* = \operatorname{argmax}_e P(f|e)$

This gives an initial translation:

Diese Woche ist die gruene Hexe zuhause.

This week is the green witch at home.

Hill Climbing

Then, apply change operators:

- Change the translation of a word or phrase
- Combine the translation of two words into a phrase
- Split up the translation of a phrase into two subphrases
- Rearrange parts of the translation

At each point, we evaluate all of the transformations by computing P(E)P(F, A|E), and select the change the maximizes this.

We iteratively run this process until reaching a local optimum.

Recent Developments in MT

Neural network methods have become very popular in MT over the past two years.

e.g., the following paper at ACL 2014:

Devlin et al. Fast and Robust Neural Network Joint Models for Statistical Machine Translation.

http://acl2014.org/acl2014/P14-1/pdf/P14-1129.pdf

Neural Network Joint Model

The model directly predicts the output translation given the input translation, and previous translation decisions:

$$P(T|S) \approx \prod_{i=1}^{|T|} P(t_i|t_{i-1}\dots,t_{i-n+1},\Sigma_i)$$

 $\Sigma_i = \sigma_1 \sigma_2 \dots \sigma_m$ is a subsequence within *S* that is predicted to be important for translating t_i .

This is done by an initial word alignment step.

Neural Network Model Structure

BLEU Results

Combined with an existing MT decoder, this model achieves very good BLEU results:

NIST MT12 Test			
	Ar-En	Ch-En	
	BLEU	BLEU	
OpenMT12 - 1st Place	49.5	32.6	
OpenMT12 - 2nd Place	47.5	32.2	
OpenMT12 - 3rd Place	47.4	30.8	
	•••		
OpenMT12 - 9th Place	44.0	27.0	
OpenMT12 - 10th Place	41.2	25.7	
Baseline (w/o RNNLM)	48.9	33.0	
Baseline (w/ RNNLM)	49.8	33.4	
+ S2T/L2R NNJM (Dec)	51.2	34.2	
+ S2T NNLTM (Dec)	52.0	34.2	
+ T2S NNLTM (Resc)	51.9	34.2	
+ S2T/R2L NNJM (Resc)	52.2	34.3	
+ T2S/L2R NNJM (Resc)	52.3	34.5	
+ T2S/R2L NNJM (Resc)	52.8	34.7	
"Simple Hier." Baseline	43.4	30.1	
+ S2T/L2R NNJM (Dec)	47.2	31.5	
+ S2T NNLTM (Dec)	48.5	31.8	
+ Other NNJMs (Resc)	49.7	32.2	

Table 3: Primary results on Arabic-English andChinese-English NIST MT12 Test Set. The first

Joint Alignment and Translation

Another method is to jointly train a model to align and translate **at the same time**.

Consider a sequence-to-sequence recurrent neural network (Cho, 2014):

A B C < 90 > W X Y Encoder

• Each block above is an RNN cell, such as a LSTM block

Attention Mechanism

At decoder step, take a weighted combination of the hidden representations in the encoder for use in predicting next word (Bahdanau et al., 2015):

$$\begin{split} c_i &= \sum_j \alpha_{ij} h_j \quad \text{Used in decoding at time} \\ \alpha_{ij} &= \frac{\exp(e_{ij})}{\sum_k e_{ik}} \\ e_{ij} &= a(s_{i-1}, h_j) \end{split}$$

where a is a feed-forward NN

Encoder

Visualization of Attention Weights

from (Bahdanau et al., 2015)

Use of attention now widespread in NLP!

Reference

- Dzmitry Bahdanau, Kyunghyun Cho, Yoshua Bengio. Neural Machine Translation by Jointly Learning to Align and Translate. ICLR 2015.
- Devlin et al. Fast and Robust Neural Network Joint Models for Statistical Machine Translation. ACL 2014.
- Ulrich Germann, Michael Jahr, Kevin Knight, Daniel Marcu, and Kenji Yamada. Fast Decoding and Optimal Decoding for Machine Translation. ACL 2001.