Natural Language Processing

COMP-599

Sept 5, 2017

Preliminaries

Instructor: Jackie Chi Kit Cheung

Time and Loc.: TR 16:05-17:25 in MAASS 217

Office hours: T 14:30-15:45 or by appointment in

MC108N

TAs: Ali Emami, Jad Kabbara, Kian

Kenyon-Dean, Krtin Kumar

Evaluation: 4 assignments (40%)

1 midterm (20%)

1 group project (40%)

The Course Is Full

If you've registered for more courses than you plan to take, please decide soon! Many students are trying to get into this course.

Due to resource and classroom size limits, I cannot extend the class size anymore.

General Policies

Lateness policy for assignments:

- < 15 minutes: no penalty
- 15 minutes 24 hours: 10% absolute penalty
- > 24 hours: not accepted

Plagiarism: just don't do it.

Language policy: In accordance with McGill policy, you have the right to write essays and examinations in English or in French.

Course website: http://cs.mcgill.ca/~jcheung/teaching/fall-2017/comp550/index.html

Important announcements given in-class or on the course website, not on MyCourses

Assignments

Four assignments (10% each)

Involve readings, problem sets and programming component.

Programming component – hand in online through myCourses

Programming to be done in Python 2.7.

Non-programming components – hand in on paper in class

Midterm

Worth 20% of your final grade

Currently scheduled for Thu, November 9, 2017

Will be conducted in-class (80 minutes long). More details as we approach the midterm date.

Final Project

Worth 40%.

Experiment on some language data set

Summarize and review relevant papers

Report on experiments

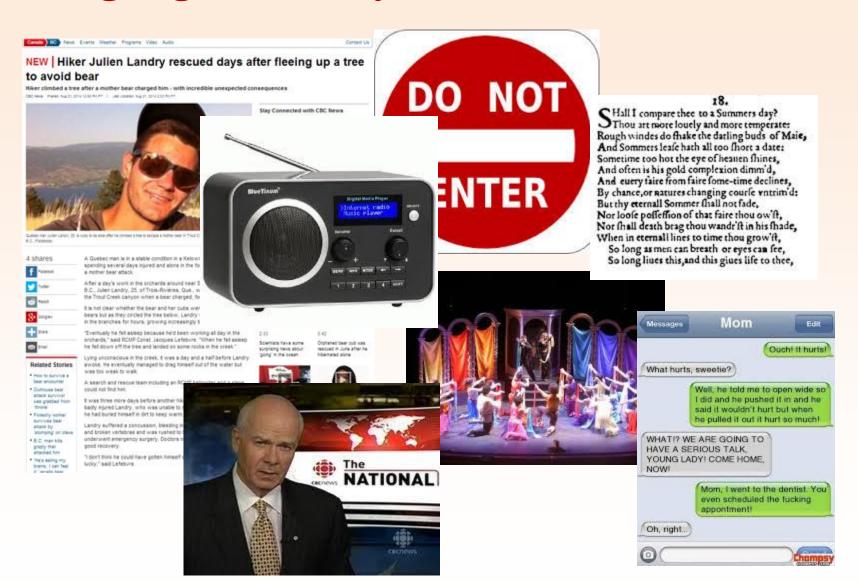
Must be done in teams of two

Coming up with a project idea:

- Extend a model we see in class
- Work on a relevant topic of interest
- Consult a list of suggested projects, to be posted

Project Steps

Paper or project proposal


Progress update

Final submission

Due dates to be announced

Computational Linguistics and Natural Language Processing

Language is Everywhere

Languages Are Diverse

6000+ languages in the world

```
language
```

langue

ਭਾਸ਼ਾ

語言

idioma

Sprache

lingua

→ The Great Language Game

http://greatlanguagegame.com/ (My high score is 1300)

Computational Linguistics (CL)

Modelling <u>natural language</u> with computational models and techniques

Domains of natural language

Acoustic signals, phonemes, words, syntax, semantics, ...

Speech vs. text

Natural language understanding (or comprehension) vs. **natural language generation (or production)**

Computational Linguistics (CL)

Modelling natural language with computational models and techniques

Goals

Language technology applications

Scientific understanding of how language works

Computational Linguistics (CL)

Modelling natural language with computational models and techniques

Methodology and techniques

Gathering data: language resources

Evaluation

Statistical methods and machine learning

Rule-based methods

Natural Language Processing

Sometimes, computational linguistics and natural language processing (NLP) are used interchangeably. Slight difference in emphasis:

NLP CL

Goal: practical Goal: how language actually works

Engineering Science

Understanding and Generation

Natural language understanding (NLU)

Language to form usable by machines or humans

Natural language generation (NLG)

Traditionally, semantic formalism to text

More recently, also text to text

Most work in NLP is in NLU

c.f. linguistics, where most theories deal primarily with production

Personal Assistant App

Understanding

Call a taxi to take me to the airport in 30 minutes.

What is the weather forecast for tomorrow?

Generation

Machine Translation

I like natural language processing.

Automatische Sprachverarbeitung gefällt mir.

Understanding

Generation

Recommendation System

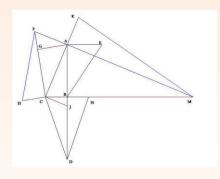
A system chats with you to discover what you like, and recommends an event to check out this weekend.

Understanding

Generation

Computational Linguistics

Besides new language technologies, there are other reasons to study CL and NLP as well.


The Nature of Language

First language acquisition

Chomsky proposed a universal grammar

Is language an "instinct"?

Do children have enough linguistic input to learn their mother tongue?

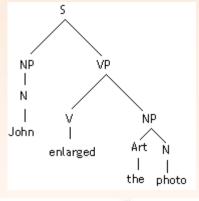
Train a model to find out!

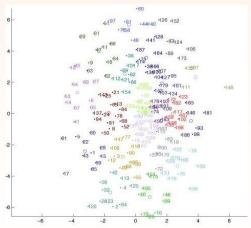
The Nature of Language

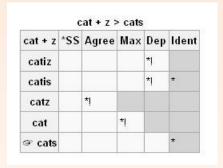
Language processing

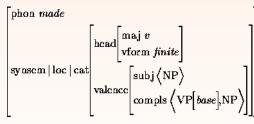
Some sentences are supposed to be grammatically correct, but are difficult to process.

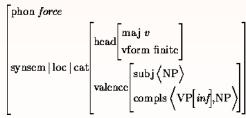
Formal mathematical models to account for this.


The rat escaped.


The rat the cat caught escaped.


?? The rat the cat **the dog chased** caught escaped.


Mathematical Foundations of CL


We describe language with various formal systems.

Mathematical Foundations of CL

Mathematical properties of formal systems and algorithms

Can they be efficiently learned from data?

Efficiently recovered from a sentence?

Complexity analysis

Implications for algorithm design

Types of Language

Text

Much of traditional NLP work has been on news text.

Clean, formal, standard English, but very limited!

More recent work on diversifying into multiple domains Political texts, text messages, Twitter

Speech

Messier: disfluencies, non-standard language

Automatic speech recognition (ASR)

Text-to-speech generation

Domains of Language

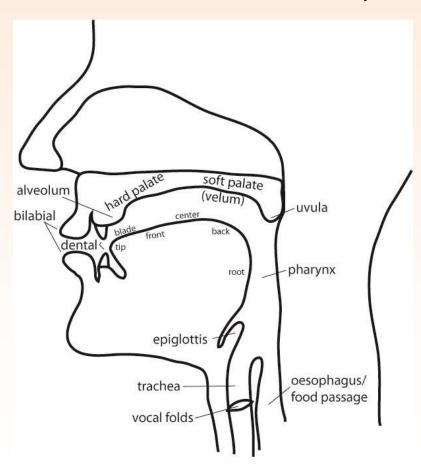
The grammar of a language has traditionally been divided into multiple levels.

Phonetics

Phonology

Morphology

Syntax


Semantics

Pragmatics

Discourse

Phonetics

Study of the speech sounds that make up language Articulation, transmission, perception

peach [phi:tsh]

Involves closing of the lips, building up of pressure in the oral cavity, release with aspiration, ...

Vowel can be described by its formants, ...

Phonology

Study of the rules that govern sound patterns and how they are organized

peach [phi:tsh]

speech [spi:tsh]

beach [bi:tsh]

The p in peach and speech are the same phoneme, but they actually are phonetically distinct!

Morphology

Word formation and meaning antidisestablishmentarianism anti- dis- establish -ment -arian -ism

establish
establishment
establishmentarian
establishmentarianism
disestablishmentarianism
antidisestablishmentarianism

Syntax

Study of the structure of language

*I a woman saw park in the.

I saw a woman in the park.

There are two meanings for the sentence above! What are they? This is called **ambiguity**.

Semantics

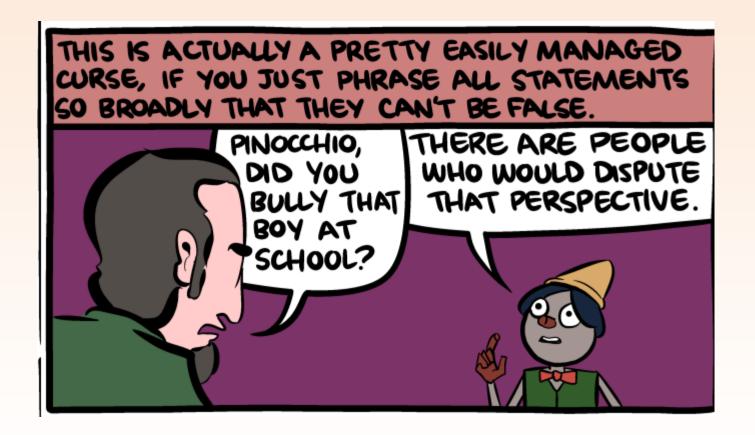
Study of the meaning of language

bank

Ambiguity in the sense of the word

Semantics


Ross wants to marry a Swedish woman.



Study of the meaning of language in context.

→ Literal meaning (semantics) vs. meaning in context: http://www.smbc-comics.com/index.php?id=3730

Pragmatics - Deixis

Interpretation of expressions can depend on **extralinguistic** context

e.g., pronouns

<u>I</u> think cilantro tastes great!

The entity referred to (the **antecedent**) by *I* depends on who is saying this sentence.

Discourse

Study of the structure of larger spans of language (i.e., beyond individual clauses or sentences)

I am angry at her.

She lost my cell phone.

I am angry at her.

The rabbit jumped and ate two carrots.

Questions

1. What is the difference between phonetics and phonology?

- 2. What are two possible readings of this phrase? What level does the ambiguity act at? (i.e., lexical, syntactic, semantic, discourse)
 - old men and women

Topics in COMP-550

Progress through the subfields, roughly organized by the level of linguistic analysis

Morphology -> Syntax -> Semantics -> Discourse

NLP problems:

 Language modelling, part-of-speech tagging, parsing, word sense disambiguation, semantic parsing, coreference resolution, discourse coherence modelling

Focus on:

Basic linguistics needed to understand NLP issues

Algorithms and problem setups

Machine Learning in COMP-550

Interspersed throughout the course, and introduced as necessary

Machine learning topics we will cover:

- Feature extraction
- Sequence and structure prediction algorithms
- Probabilistic graphical models
- Linear discriminative models
- Neural networks and deep learning

Applications in COMP-550

Last three weeks of the course focus on language technology applications and advanced topics:

Automatic summarization

Machine translation

Evaluation issues in NLP

Course Objectives

Understand the broad topics, applications and common terminology in the field

Prepare you for research or employment in CL/NLP

Learn some basic linguistics

Learn the basic algorithms

Be able to read an NLP paper

Understand the challenges in CL/NLP

Answer questions like "Is it easy or hard to..."

Plan for the Next Week

I will be away at a conference for the next week

Thursday's class:

Lecture by TA Krtin Kumar on finite state machines for morphology

Tuesday's class:

 Python tutorial + a presentation of a NLP research project by TA Jad Kabbara

This means no office hours next Tuesday. E-mail me if you need to discuss anything.