Natural Language Generation

COMP-599

Nov 21, 2016

A4 is Out

Due Dec 5

Submit reading separately from rest of assignment

Outline

Techniques for extractive summarization

Steps in NLG

Canned Text and Template Filling

Surface realization

FUF/SURGE

Text-to-text generation

Sentence compression

Sentence fusion

TF*IDF (Salton, 1988)

Term Frequency Times Inverse Document Frequency

A term is important/indicative of a document if it:

- 1. Appears many times in the document
- 2. Is a relative rare word overall

TF is usually just the count of the word

IDF is a little more complicated:

$$IDF(t, Corpus) = \log \frac{\#(\text{Docs in } Corpus)}{\#(\text{Docs with term } t) + 1}$$

Need a separate large training corpus for this

Originally designed for document retrieval

Topic Signatures

A method designed by Lin and Hovy (2000)

First, determine two sets of related and unrelated articles.

e.g., Summarizing about vaccinations

Related (R): articles in health domain

Unrelated $(\neg R)$: articles in the finance, education domains

For each term t_i , compute following matrix:

	R	$\neg R$
t_i	011	012
$\neg t_i$	0 ₂₁	022

Binomial Distributions

We will consider each *row* of the contingency table

	R	$\neg R$
t_i	011	012
$\neg t_i$	021	022

e.g., from first row, we ask: what is the probability that occurrences of t_i are distributed between R and $\neg R$ in this way? This is a **binomial distribution**.

$$b(k; n, \theta) = \binom{n}{k} \theta^k (1 - \theta)^{(n-k)}$$

Competing Hypotheses

Compare the following two hypotheses:

Hypothesis 1: the term t_i is not characteristic of the domain; the distribution of occurrences of t_i between R and $\neg R$ is the same as for all other terms, $\neg t_i$

Likelihood of data given this hypothesis:

$$L(H_1) = b(O_{11}; O_{11} + O_{12}, p)b(O_{21}; O_{21} + O_{22}, p)$$

Hypothesis 2: the term t_i is important to the domain; the distribution of occurrences of t_i between R and $\neg R$ is different from the distribution for all other terms, $\neg t_i$ $L(H_2) = b(O_{11}; O_{11} + O_{12}, p_1)b(O_{21}; O_{21} + O_{22}, p_2)$

Likelihood Ratio

We'll compute the following likelihood ratio:

$$-2\log\lambda = -2\log\frac{L(H_1)}{L(H_2)}$$

A high value of $-2 \log \lambda$ for a term indicates that the term is indicative of the domain; good to include in summary.

Rank sentences by $-2 \log \lambda$ and select sentences with words that score highly on this.

Sample Rankings

Topic 10 Signature Terms of Topic 151 —				
Unigram	$-2log\lambda$	Bigram	$-2log\lambda$	
jail	461.044	county jail	160.273	
county	408.821	early release	85.361	
overcrowding	342.349	state prison	74.372	
inmate	234.765	state prisoner	67.666	
sheriff	154.440	day fine	61.465	
state	151.940	jail overcrowding	61.329	
prisoner	148.178	court order	60.090	
prison	145.306	local jail	56.440	
city	133.477	prison overcrowding	55.373	
overcrowded	128.008	central facility	52.909	
Topic 10 Signature Terms of Topic 257 — C				
Unigram	$-2log\lambda$	Bigram	$-2log\lambda$	
Unigram cigarette	$-2log\lambda$ 476.038	Bigram tobacco industry	$-2log\lambda \\ 80.768$	
	ū	O	_	
cigarette	476.038	tobacco industry	80.768	
cigarette tobacco	476.038 313.017	tobacco industry bn cigarette	80.768 67.429	
cigarette tobacco smoking	476.038 313.017 284.198	tobacco industry bn cigarette philip morris	80.768 67.429 54.073	
cigarette tobacco smoking smoke	476.038 313.017 284.198 159.134	tobacco industry bn cigarette philip morris cigarette year	80.768 67.429 54.073 48.045	
cigarette tobacco smoking smoke rothmans	476.038 313.017 284.198 159.134 156.675	tobacco industry bn cigarette philip morris cigarette year rothmans international	80.768 67.429 54.073 48.045 44.434	
cigarette tobacco smoking smoke rothmans osha	476.038 313.017 284.198 159.134 156.675 148.372	tobacco industry bn cigarette philip morris cigarette year rothmans international tobacco smoke	80.768 67.429 54.073 48.045 44.434 44.269	
cigarette tobacco smoking smoke rothmans osha seita	476.038 313.017 284.198 159.134 156.675 148.372 126.421	tobacco industry bn cigarette philip morris cigarette year rothmans international tobacco smoke sir patrick	80.768 67.429 54.073 48.045 44.434 44.269 40.455	

Multi-Document Summarization

Additional issues to consider:

- Conflicting or contradictory information
- Redundancy between documents
- Combining information from multiple documents

But the second point can actually work to our advantage

 If everybody is talking about the same thing, that thing is likely to be important information.

SumBasic

(Nenkova and Vanderwende, 2005)

Uses unigram frequencies with a simple update for non-redundancy.

Step 1: Compute $p(w_i) = n_i/N$

Repeat until summary length limit reached:

Step 2: Rank sentences by their average word probabilities

Step 3: Pick best scoring sentence S^{best} ; add to summary.

Step 4: For each word w_j in S^{best} , update

$$p^{new}(w_j) = p^{old}(w_j)^2$$

This down-weights the words that were just selected

Later Developments

More sophisticated optimization procedures:

Rather than a greedy selection and update step, select a globally optimum set of sentences, accounting for both informativeness and non-redundancy.

Account for similarities between bigrams

Other heuristics, such as avoiding sentences with pronouns

Removing words, such as discourse cues like therefore, that don't make sense out of context.

Modelling coherence or flow of summary sentences.

Conroy et al., 2006

This system combines the topic signature method, a sophisticated non-redundancy module, and the following eliminations:

- Gerund clauses
 Sally went to the store, <u>skipping on one leg</u>.
- Restricted relative-clause appositives
 Bob, who is the president of the club, disagreed.
- Intra-sentential attribution
 They would never do that, she said, without consulting us.
- Lead adverbs
 <u>Hopefully</u>, we will find a solution.

Performance

This simple method (with a few other details), achieves near-human performance on ROUGE-1:

Submission	Mean	95% CI Lower	95% CI Upper
F	0.36787	0.34442	0.39467
В	0.36126	0.33387	0.38754
$O(\omega)$	0.35810	0.34263	0.37330
H	0.33871	0.31540	0.36423
A	0.33289	0.30591	0.35759
D	0.33212	0.30805	0.35628
E	0.33277	0.30959	0.35687
C	0.30237	0.27863	0.32496
G	0.30909	0.28847	0.32987
$\omega_{qs}^{(pr)}$	0.308	0.294	0.322
peer 65	0.308	0.293	0.323
SumBasic	0.302	0.285	0.319
peer 34	0.290	0.273	0.307
peer 124	0.286	0.268	0.303
peer 102	0.285	0.267	0.302

Table 4: Average ROUGE 1 Scores with stop words removed for DUC04, Task 2

Extraction vs. Abstraction

Reminder:

Extraction – take snippets from the source text and put them in the summary

Abstraction – compose novel text not found in the source

Allows better aggregation of information

Requires natural language generation

Natural Language Generation

Let's compare understanding and generation

Concerns of NLU:

- Ambiguity (e.g., get all possible parses)
- Disambiguation
- Underspecification

Concerns of NLG:

- Selecting appropriate content
- Selecting appropriate form to express content

Canned Text

Weather Tweets: Template Filling

Good for restricted domains.

Environment Canada's weather alert Twitter feeds:

https://twitter.com/ECAlertQC147

What is the generation template?

Steps in NLG

One potential architecture for an NLG system:

- 1. Content selection
- 2. Document structuring
- 3. Microplanning
- 4. Surface realization

Content Selection

Deciding what to say

Ingredients:

Communicative goal

Knowledge about the world

Application-specific

How did we approach content selection last class in multidocument summarization?

Document Structuring

Deciding how to structure the contents of the output What order should they be presented in? Some factors:

- Importance of the concepts
- Discourse relations
- Coherence

e.g., **Argumentation Theory** gives some guidelines on how to arrange information

- Present main claims first
- Arrange and discuss supporting evidence
- Present and debate opposing evidence

(Carenini and Moore, 2006)

Microplanning

Selecting lexical items

• (BLZRD, -5, -10, 30km/h, MONTREAL) -> blizzard, low, high, wind speed, Montreal

Deciding how they fit together into clauses and sentences (sentence planning or aggregation)

- First sentence: present location and time that weather forecast pertains to
- Second sentence: present details of forecast

Generating referring expressions

• Justin Pierre James Trudeau PC MP; Justin Trudeau; the Prime Minister; Mr. Trudeau; that guy; he; him

Surface Realization

Convert fully specified discourse plan to output form (individual sentences, or other kinds of output)

Different possible levels of input specification:

- Highly detailed semantic structure, with all decisions made already (lexical items, tense, aspect and mood of verbs, referring expressions, etc.)
- Shallower kinds of semantics (e.g., similar to a dependency tree)

Reusable Components

There have been few standard tools or task definitions in NLG:

Referring expression generation

Surface realization

Let's look at a surface realization system: FUF/Surge

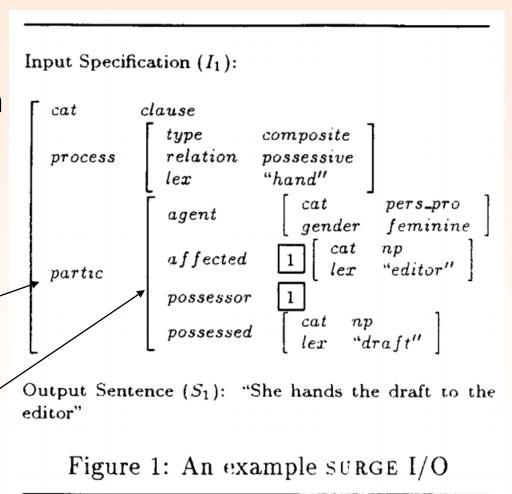
FUF/SURGE

A cascade of deterministic rules to convert a structured semantic representation to a string:

Attribute

Value

(Elhadad and Robin, 1996)



Components in FUF/SURGE

- 1. Map thematic structures (i.e., semantic roles) to syntactic roles
 - e.g., agent -> subject
- 2. Handle syntactic alternations e.g., active-passive, dative alternation
- 3. Fill in default features, agreement features e.g., NPs are definite, if not otherwise specified subject and verb agree in number
- 4. Handle closed-class wordse.g., [cat pers_pro, gender feminine] -> she

Components in FUF/SURGE

- Order components with respect to each other
 e.g., subject > verb-group > indirect-object > direct object
- 6. Fill in inflections e.g., to hand -> hands
- 7. Linearize the tree into the final string, using precedence constraints

Nitrogen (Langkilde and Knight, 1998)

Use corpus statistics to help us make decisions.

See HW4 ©

A Matter of Inputs

Traditional NLG: data-to-text

What about starting from other text?

e.g., summarization can be seen as text-to-text generation

Advantages?

Disadvantages?

Goals of Text-to-Text Generation

Since we are already starting with some text, there must be something about the input that we are changing to produce the output:

- Length
 Informative summarization
- Complexity
 Text simplification
- Other factors?

Sentence Compression

(Knight and Marcu, 2000)

Assumptions:

- May drop some words in original sentence
- Remaining words stay in the same order

Example:

Orig: Beyond the basic level, the operations of the three products vary widely.

Noisy-C: The operations of the three products vary widely.

Human: The operations of the three products vary widely.

Noisy-Channel Model

View as a noisy-channel model

$$\begin{array}{c} \text{Noisy channel} \\ \text{Input, short string} & \longrightarrow & \text{Output, long string} \\ s & & t \\ \text{Source model} & \text{Channel model} \\ P(s) & P(t|s) \\ \end{array}$$

Compression = finding $argmax_s P(s)P(t|s)$

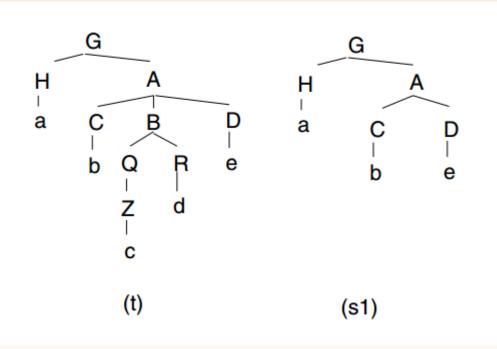
Components of Model

P(s) – language model – combine a bigram language model with a PCFG language model

P(t|s) – probably of long string given short string View as a series of PCFG rule expansions:

Assign a probability to each operation that maps from a rule in s to a rule in t.

Example: P(s1)



$$P(s1) = P(TOP \rightarrow G)$$

$$P(G \rightarrow H A)$$

$$P(H \rightarrow a)$$

$$P(A \rightarrow C D)$$

$$P(C \rightarrow b)$$

$$P(D \rightarrow e)$$

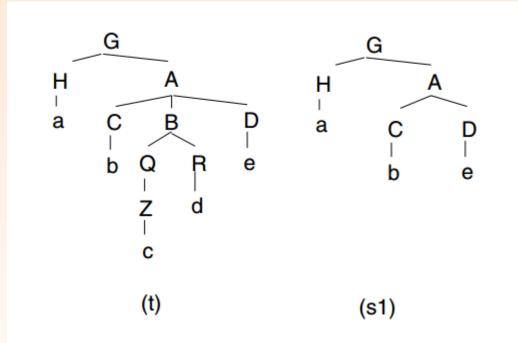
$$P(a|START)$$

$$P(b|a)$$

$$P(e|b)$$

$$P(END|e)$$

Example P(t | s1)



$$P(t|s1) = P(G \to HA|G \to HA)$$

$$P(A \to CBD|A \to CD)$$

$$P(B \to QR)$$

$$P(Q \to Z)$$

$$P(Z \to c)$$

$$P(R \to d)$$

More Details

To learn the model probabilities, need a corpus of sentences with simplifications.

Need a little more work to:

- Align PCFG productions between s and t
- Efficiently search for the best possible s given a trained model
- See paper for details

Sample Output

Orig: Arborscan is reliable and worked accurately in testing, but it produces very large dxf files.

Noisy-C: Arborscan is reliable and worked accurately in testing, but it produces very large dxf files.

Human: Arborscan produces very large dxf files.

Orig: Many debugging features, including user-defined break points and variable-watching and message-watching windows, have been added.

Noisy-C: Many debugging features, including user-defined points and variable-watching and message-watching windows, have been added.

Human: Many debugging features have been added.

Sentence Fusion

(Barzilay and McKeown, 2005; Filippova and Strube, 2008; Thadani and McKeown, 2013; Cheung and Penn, 2014)

Combine information from multiple sentences. Take a *union* of information.

Bohr studied at the University of Copenhagen and got his PhD there.

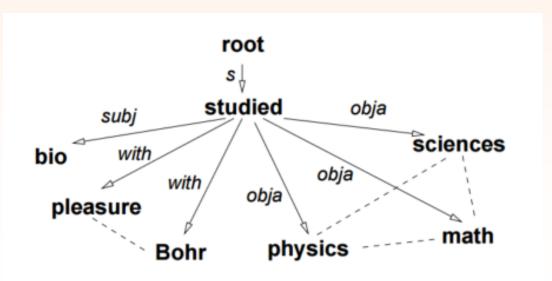
After graduating, he studied physics and mathematics at the University of Copenhagen.

After graduating, Bohr studied physics and mathematics at the University of Copenhagen and got his PhD there.

Step 1: Sentence Graph

Create a **sentence graph** by merging the input sentences' dependency trees at the nodes with the same words.

- e.g.: He <u>studied</u> sciences with pleasure.
 - + He studied math and physics with Bohr.



(Filippova and Strube, 2008)

Step 2: Extract a New Sentence

Select a subset of nodes in sentence graph that will form a new dependency tree, from which a new sentence can be generated.

Problem: many desiderata and constraints

- Nodes must form a tree
- Selected nodes must contain the important words
- Selected nodes should make sense in relation to each other
- Desired output length

Would like a method that allows us to write down all of these hard and soft constraints

Solution: Integer Linear Programming

For each edge in the sentence graph from word h to word w with label l, create a variable x_{hw}^{l} .

$$x_{hw}^{l} = \begin{cases} 1 & \text{select this edge} \\ 0 & \text{don't select this edge} \end{cases}$$

Optimize the following objective:

$$f(X) = \sum_{x} x_{hw}^{l} \times P(l|h) \times I(w)$$

"Grammaticality" – how often this head word generates a dependent with this label Importance of the dependent

Constraints in ILP

maximize $f(X) = \sum_{x} x_{hw}^{l} \times P(l|h) \times I(w)$ subject to

$$\forall w \in W, \sum_{h,l} x_{hw}^l \le 1$$

$$\forall w \in W, \sum_{h,l} x_{hw}^l - \frac{1}{|W|} \sum_{u,l} x_{wu}^l \ge 0$$

First constraint ensures each word has at most one head Second ensures that selected nodes form a connected tree

How would we constrain the number of words in the output?

ILP for NLG

Various other syntactic and semantic constraints

e.g., ensure that conjoints are similar to each other (math and physics is likely, math and Bohr is unlikely)

In general, ILP is popular for NLG:

- Allows declarative specification of diverse objectives and constraints
- Can be solved fairly efficiently using off-the-shelf solvers http://lpsolve.sourceforge.net/5.5/ http://www-01.ibm.com/software/commerce/optimization/cplexoptimizer/

Brainstorm

How can you formulate multi-document extractive summarization as an ILP? What would be the objective and what would be some constraints?

How can you formulate sentence compression as an ILP? What would be the objective and what would be some constraints?

Midterm

Marked out of 44 (Equivalent to making one of the problem sets a bonus question)

Average grade: B

References

Carenini and Moore. 2006. Generating and evaluating evaluative arguments. *Artificial Intelligence*.

Elhadad and Robin. 1996. An Overview of SURGE: A Reusable Comprehensive Syntactic Realization Component. *INLG*.

Filippova and Strube. 2008. Sentence Fusion via Dependency Graph Compression. *EMNLP*.

Knight and Marcu. 2000. Statistics-based Summarization – Step One: Sentence Compression. *AAAI*.