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A1 Stats
B+ average, generally well done.

Priya will give some overall feedback.
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Outline
Review

Incorporating context

Markovization

Learning the context
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Converting to CNF (1)
Rule of type A  B C D …

• Rewrite into: A  X1 D …  and   X1  B C

Rule of type A  s B

• Rewrite into: A  X2 B   and   X2  s

Rule of type A  B

• Everywhere in which we see B on the LHS, replace it with 
A. Keep the original rule too.
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Examples of Conversion
Let’s convert the following grammar fragment into CNF:

S  NP VP N  I | elephant | pyjamas

VP  V NP PP V  shot

VP  V NP Detmy | the

NP  N

NP  Det N

NP  Det N PP

PP  in NP
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Solutions
S  NP VP

VP  X1 PP X1     V NP

VP  V NP

NP  Det N

NP  X2 PP X2     Det N

PP  P NP

P  in

NP  I | elephant | pyjamas

N  I | elephant | pyjamas

V  shot

Detmy | the
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Review of CYK
Describe the general process of the CYK algorithm

• Is it top-down or bottom-up? What does this mean?

• What is the chart used for? What are the entries in the 
cells?

• What did those arrows that we drew mean?
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Vanilla PCFGs
Estimate of rule probabilities:

• MLE estimates:

Pr 𝛼 → 𝛽 =
#(𝛼 → 𝛽)

#𝛼
• e.g., Pr(S -> NP VP) = #(S -> NP VP) / #(S)

• Recall: these distributions are normalized by LHS symbol 

Even with smoothing, doesn’t work very well:

• Not enough context

• Rules are too sparse
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Subject vs Object NPs
NPs in subject and object positions are not identically 
distributed:

• Obvious cases – pronouns (I vs me)

• But both appear as NP -> PRP -> I/me

• Less obvious: certain classes of nouns are more likely to 
appear in subject than object position, and vice versa.

• For example, subjects tend to be animate (usually, humans, 
animals, other moving objects)

Many other cases of obvious dependencies between 
distant parts of the syntactic tree.
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Sparsity
Consider subcategorization of verbs, with modifiers

• ate VP -> VBD

• ate quickly VP -> VBD AdvP

• ate with a fork VP -> VBD PP

• ate a sandwich VP -> VBD NP

• ate a sandwich quickly VP -> VBD NP AdvP

• ate a sandwich with a fork VP -> VBD NP PP

• quickly ate a sandwich with a fork VP -> AdvP VBD NP PP

We should be able to factorize the probabilities:

• of having an adverbial modifier, of having a PP modifier, 
etc.
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Wrong Independence Assumptions
Vanilla PCFGs make independence assumptions that 
are too strong AND too weak.

Too strong: vertically, up and down the syntax tree

Too weak: horizontally, across the RHS of a production
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Adding Context
Add more context vertically to the PCFG

• Annotate with the parent category

Before: NP -> PRP, NP -> Det NN, etc.

Now:

Subjects:

NP^S -> PRP, NP^S -> Det NN, etc.

Objects:

NP^VP -> PRP, NP^VP -> Det NN, etc.

Learn the probabilities of the rules separately (though 
they may influence each other through 
interpolation/smoothing)
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Example
Let’s help Pierre Vinken find his ancestors.
( (S

(NP

(NP (NNP Pierre) (NNP Vinken) )

(, ,)

(ADJP

(NP (CD 61) (NNS years) )

(JJ old) )

(, ,) )

(VP (MD will)

(VP (VB join)

(NP (DT the) (NN board) )

(PP (IN as)

(NP (DT a) (JJ nonexecutive) (NN director) ))

(NP (NNP Nov.) (CD 29) )))

(. .) ))

13

Note that the tree here is given in bracket parse format,
rather than drawn out as a graph.



Removing Context
Conversely, we break down the RHS of the rule when 
estimating its probability.

Before: Pr(VP -> START AdvP VBD NP PP END) as a unit

Now: Pr(VP -> START AdvP) *

Pr(VP -> AdvP VBD) *

Pr(VP -> VBD NP) *

Pr(VP -> NP PP) *

Pr(VP -> PP END)

• In other words, we’re making the same N-gram 
assumption as in language modelling, only over non-
terminal categories rather than words.

• Learn probability of factors separately
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Example
Let’s help Pierre Vinken find his children.
( (S

(NP

(NP (NNP Pierre) (NNP Vinken) )

(, ,)

(ADJP

(NP (CD 61) (NNS years) )

(JJ old) )

(, ,) )

(VP (MD will)

(VP (VB join)

(NP (DT the) (NN board) )

(PP (IN as)

(NP (DT a) (JJ nonexecutive) (NN director) ))

(NP (NNP Nov.) (CD 29) )))

(. .) ))
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Markovization
Vertical markovization: adding ancestors as context

• Zeroth order – vanilla PCFGs

• First order – the scheme we just described

• Can go further:

• e.g., Second order: NP^VP^S -> …

Horizontal markovization: breaking RHS into parts

• Infinite order – vanilla PCFGs

• First order – the scheme we just described

• Can choose any other order, do interpolation, etc.
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Evaluating Parsers
How well does this work in practice?

First need a measure of the performance of a parser!

Usually measure at the level of constituents
(VP (VB join) (NP (DT the) (NN board)))

• Constituents here are the VP, and the NP

• We shouldn’t really count the leaf nodes (VB, DT, NN), as 
these are the POS tags, but common measures often do!

• Two things to consider:

• Gold standard – the correct parse

• System prediction – the output of our parser
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Recall
Of the constituents in the gold standard, what 
percentage of them were correctly recovered?

e.g., Gold standard:

[A [B C [D E]] [F G]]

System prediction:

[A B [C [D E]] [F G]]
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Precision
Of the constituents in the system prediction, what 
percentage of them are actually correct?

e.g., Gold standard:

[A [B C [D E]] [F G]]

System prediction:

[A B [C [D E]] [F G]]
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Game the Measure
How can we get near-100% precision or near-100% 
recall without doing any real work?

Recall?

Precision?
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F1-measure
Take a harmonic mean between Recall and Precision:

𝐹1 =
2 ∗ 𝑃 ∗ 𝑅

𝑃 + 𝑅
• Can only do well on F1 if system does well on both recall 

and precision

• F1 suffers if P and R are highly imbalanced
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Effect of Category Splitting

WSJ results by Klein and Manning (2003)

• With additional heuristics from linguistic insights, they got 
up to 87.04 F1
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Can We Learn These Distinctions?
Above: human linguistic insights to make splits

• NP split into NP^S and NP^VP for subjects and objects

We are in AI! Let’s automate this too!
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Prepare for 
your syntactic 
categories to 

be split.



Petrov and Klein (2006)
Basic idea:

• Introduce a latent variable associated with each 
nonterminal

• NP becomes NP-1, NP-2, NP-3, … NP-k

• Adaptively increase and decrease k for each non-terminal 
category to maximize training corpus likelihood

• Called the split-merge algorithm
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Annotated Rules
Rules are now in the following form:

𝐴𝑥 → 𝐵𝑦𝐶𝑧

e.g., 𝑆3 → 𝑁𝑃1 𝑉𝑃4
or 𝐷𝑇2 → 𝑡ℎ𝑒

And we need to learn the probabilities of each of these 
rules
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Split-Merge Algorithm
Overall algorithm:

Start off with the original, initial grammar, deriving 
probability estimates in the usual way

Do for a n iterations:

Split the grammar by duplicating each non-terminal symbol

Get latent annotations over the training corpus in order to 
update the probabilities of the rules

Merge by merging together some of the subsymbols back into 
one subsymbol
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Splitting
Suppose we currently have n states in the grammar for 
a non-terminal 𝐴. After splitting, we’ll have 2n states.

Split 𝐴𝑥 into 𝐴𝑥′ and 𝐴𝑥′′:

Case 1: 𝐴𝑥 on LHS. i.e., 𝑃(𝐴𝑥 → 𝐵𝑦 𝐶𝑧):

Copy probabilities 

• Set 𝑃 𝐴𝑥′ → 𝐵𝑦 𝐶𝑧 to  𝑃(𝐴𝑥 → 𝐵𝑦 𝐶𝑧)

• Set 𝑃 𝐴𝑥′′ → 𝐵𝑦 𝐶𝑧 to 𝑃(𝐴𝑥 → 𝐵𝑦 𝐶𝑧)

Case 2: 𝐴𝑥 on RHS. i.e., 𝑃(𝐷𝑟 → 𝐴𝑥 𝐸𝑠):

Halve the probabilities

• Set 𝑃(𝐷𝑟 → 𝐴𝑥′ 𝐸𝑠) to 𝑃 𝐷𝑟 → 𝐴𝑥 𝐸𝑠 / 2

• Set 𝑃(𝐷𝑟 → 𝐴𝑥′′ 𝐸𝑠) to 𝑃(𝐷𝑟 → 𝐴𝑥 𝐸𝑠)/ 2
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Randomness
To make the two new states different from each other, 
we’ll also add a little bit of randomness to the 
probabilities.

e.g., Copy 0.46 to be 0.452 and 0.464

Halve 0.5 to 0.2501 and 0.2449

Just make sure to renormalize the distributions properly.

We’ll see why this is important.
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Learning New Grammar 
Now that we have latent variables, we can’t use simple 
MLE or MAP estimates for the rule probabilities.

If we did have the latent variable annotations, we could do 
this, but we don’t.

What algorithm did we discuss before that solved this same 
problem?
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Expectation Maximization Again
Use a version of EM to predict the label annotations in 
the trees in the training set

Starting with the probabilistic grammar after splitting:

• “Guess” the labels of the trees (E-step)

• Improve the grammar based on the guesses (M-step)

Without randomness:

Everything would be symmetric

The two subsymbols would be equally likely in all cases in E-
step.

Since everything is tied, estimates never improve in M-step!
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𝑆

P-IN
𝑃𝐼𝑁(𝑟, 𝑡, 𝐴𝑥) = 𝑃(𝑤𝑟:𝑡|𝐴𝑥)

Intuitively:

• Probability of the words within the span of words r and t 
given the label 𝐴𝑥

• Analogous to backward probabilities in HMM
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𝑤1 𝑤2 … 𝑤𝑟 𝑤𝑟+1 … 𝑤𝑡−1 𝑤𝑡 … 𝑤𝑛

𝐴𝑥



P-OUT
𝑃𝑂𝑈𝑇(𝑟, 𝑡, 𝐴𝑥) = 𝑃(𝑤1:𝑟𝐴𝑥𝑤𝑡:𝑛)

Intuitively:

• Probability of the words outside of a certain span and the 
label 𝐴𝑥 for the span r to t.

• Analogous to backward probabilities in HMM
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𝑤1 𝑤2 … 𝑤𝑟 𝑤𝑟+1 … 𝑤𝑡−1 𝑤𝑡 … 𝑤𝑛

𝐴𝑥

𝑆



E-Step: Combining P-IN and P-OUT
For a tree in the training corpus, T:

𝑃 𝑟, 𝑠, 𝑡, 𝐴𝑥 → 𝐵𝑦𝐶𝑧 𝑤, 𝑇 ∝

𝑃𝑂𝑈𝑇 𝑟, 𝑡, 𝐴𝑥 𝑃 𝐴𝑥 → 𝐵𝑦𝐶𝑧 𝑃𝐼𝑁 𝑟, 𝑠, 𝐵𝑦 𝑃𝐼𝑁(𝑠, 𝑡, 𝐶𝑧)

Equation (1) in paper

Why is this correct? Let’s visualize it by drawing a tree.
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M-Step
The “soft” version of the regular PCFG update 
equation, as before:

𝑃 𝐴𝑥 → 𝐵𝑦𝐶𝑧 =
#𝑆𝑂𝐹𝑇{𝐴𝑥 → 𝐵𝑦𝐶𝑧}

 𝑦′,𝑧′ #𝑆𝑂𝐹𝑇{𝐴𝑥 → 𝐵𝑦′𝐶𝑧′}
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Merging
We have n subsymbols, and want to merge two of them 
together (result, n-1 subsumbols).

Try merging each pair – see how much training corpus 
likelihood suffers.

Merge the pair with the lowest loss

How to calculate training corpus likelihood loss?
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Suppose We Merge 𝐴𝑥′ and 𝐴𝑥′′
Then, update 𝑃𝐼𝑁 and 𝑃𝑂𝑈𝑇 according to the relative 
frequencies of 𝐴𝑥′ and 𝐴𝑥′′:
𝑃𝐼𝑁 𝑟, 𝑡, 𝐴𝑥 = 𝑝

′𝑃𝐼𝑁 𝑟, 𝑡, 𝐴𝑥′ + 𝑝
′′𝑃𝐼𝑁 𝑟, 𝑡, 𝐴𝑥′′

𝑃𝑂𝑈𝑇 𝑟, 𝑡, 𝐴𝑥 = 𝑝
′𝑃𝑂𝑈𝑇 𝑟, 𝑡, 𝐴𝑥′ + 𝑝

′′𝑃𝑂𝑈𝑇 𝑟, 𝑡, 𝐴𝑥′′

Probability of a sentence can be computed using these 
updated estimates:

𝑃 𝑤, 𝑇 = 

𝑥

𝑃𝐼𝑁 𝑟, 𝑡, 𝐴𝑥 𝑃𝑂𝑈𝑇(𝑟, 𝑡, 𝐴𝑥)

See paper for more details.
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Smoothing
Another step that makes the probabilities of each 
annotated rule be influenced by related ones.

For 𝑝𝑥 = 𝑃(𝐴𝑥 → 𝐵𝑦𝐶𝑧):

interpolate with other 𝐴𝑥′:
𝑝𝑥
𝑠𝑚𝑜𝑜𝑡ℎ = 1 − 𝛼 𝑝𝑥 + 𝛼  𝑝

 𝑝 =
1

𝑛
 

𝑦

𝑝𝑦
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Results
After six split-merge-smooth cycles, P/R results improve 
to 89.8/89.6.

This is despite not have any manual linguistic 
annotations or complex feature extraction!

Interesting hierarchies can also be observed over the 
course of training:
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Hierarchical Learning
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Lessons Learned
We have seen a method that seems to partially 
automate the job of a linguist!

Results in improved parsing performance

EM can be applied in many settings with latent 
variables, such as with tree structures.
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